IDEAS home Printed from https://ideas.repec.org/p/cam/camdae/2455.html
   My bibliography  Save this paper

Latent Position-Based Modeling of Parameter Heterogeneity

Author

Listed:
  • Vainora, J.

Abstract

This paper proposes to use the Generalized Random Dot Product Graph model and the underlying latent positions to model parameter heterogeneity. We discuss how the Stochastic Block Model can be directly applied to model individual parameter heterogeneity. We also develop a new procedure to model pairwise parameter heterogeneity requiring the number of distinct latent distances between unobserved communities to be low. It is proven that, asymptotically, the heterogeneity pattern can be completely recovered. Additionally, we provide three test statistics for the assumption on the number of distinct latent distances. The proposed methods are illustrated using data on a household microfinance program and the S&P 500 component stocks.

Suggested Citation

  • Vainora, J., 2024. "Latent Position-Based Modeling of Parameter Heterogeneity," Cambridge Working Papers in Economics 2455, Faculty of Economics, University of Cambridge.
  • Handle: RePEc:cam:camdae:2455
    Note: jv429
    as

    Download full text from publisher

    File URL: https://www.econ.cam.ac.uk/research-files/repec/cam/pdf/cwpe2455.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Srijan Sengupta & Yuguo Chen, 2018. "A block model for node popularity in networks with community structure," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(2), pages 365-386, March.
    2. Jianwei Hu & Hong Qin & Ting Yan & Yunpeng Zhao, 2020. "Corrected Bayesian Information Criterion for Stochastic Block Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(532), pages 1771-1783, December.
    3. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    4. D. S. Choi & P. J. Wolfe & E. M. Airoldi, 2012. "Stochastic blockmodels with a growing number of classes," Biometrika, Biometrika Trust, vol. 99(2), pages 273-284.
    5. Kehui Chen & Jing Lei, 2018. "Network Cross-Validation for Determining the Number of Communities in Network Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 241-251, January.
    6. Robert Tibshirani & Guenther Walther & Trevor Hastie, 2001. "Estimating the number of clusters in a data set via the gap statistic," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 411-423.
    7. Daniel L. Sussman & Minh Tang & Donniell E. Fishkind & Carey E. Priebe, 2012. "A Consistent Adjacency Spectral Embedding for Stochastic Blockmodel Graphs," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1119-1128, September.
    8. Tianxi Li & Elizaveta Levina & Ji Zhu, 2020. "Network cross-validation by edge sampling," Biometrika, Biometrika Trust, vol. 107(2), pages 257-276.
    9. Angelo Mele & Lingxin Hao & Joshua Cape & Carey E. Priebe, 2023. "Spectral Estimation of Large Stochastic Blockmodels with Discrete Nodal Covariates," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1364-1376, October.
    10. Zhu, Mu & Ghodsi, Ali, 2006. "Automatic dimensionality selection from the scree plot via the use of profile likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 918-930, November.
    11. Sugar, Catherine A. & James, Gareth M., 2003. "Finding the Number of Clusters in a Dataset: An Information-Theoretic Approach," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 750-763, January.
    12. Patrick Rubin‐Delanchy & Joshua Cape & Minh Tang & Carey E. Priebe, 2022. "A statistical interpretation of spectral embedding: The generalised random dot product graph," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1446-1473, September.
    13. Fujita, André & Takahashi, Daniel Y. & Patriota, Alexandre G., 2014. "A non-parametric method to estimate the number of clusters," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 27-39.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    2. J. Fernando Vera & Rodrigo Macías, 2021. "On the Behaviour of K-Means Clustering of a Dissimilarity Matrix by Means of Full Multidimensional Scaling," Psychometrika, Springer;The Psychometric Society, vol. 86(2), pages 489-513, June.
    3. Koltcov, Sergei, 2018. "Application of Rényi and Tsallis entropies to topic modeling optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1192-1204.
    4. Lingsong Meng & Dorina Avram & George Tseng & Zhiguang Huo, 2022. "Outcome‐guided sparse K‐means for disease subtype discovery via integrating phenotypic data with high‐dimensional transcriptomic data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(2), pages 352-375, March.
    5. Jonas M. B. Haslbeck & Dirk U. Wulff, 2020. "Estimating the number of clusters via a corrected clustering instability," Computational Statistics, Springer, vol. 35(4), pages 1879-1894, December.
    6. Julian Rossbroich & Jeffrey Durieux & Tom F. Wilderjans, 2022. "Model Selection Strategies for Determining the Optimal Number of Overlapping Clusters in Additive Overlapping Partitional Clustering," Journal of Classification, Springer;The Classification Society, vol. 39(2), pages 264-301, July.
    7. Wu, Qianyong & Hu, Jiang, 2024. "Two-sample test of stochastic block models," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
    8. Hofmeyr, David P., 2020. "Degrees of freedom and model selection for k-means clustering," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).
    9. Yaeji Lim & Hee-Seok Oh & Ying Kuen Cheung, 2019. "Multiscale Clustering for Functional Data," Journal of Classification, Springer;The Classification Society, vol. 36(2), pages 368-391, July.
    10. Yujia Li & Xiangrui Zeng & Chien‐Wei Lin & George C. Tseng, 2022. "Simultaneous estimation of cluster number and feature sparsity in high‐dimensional cluster analysis," Biometrics, The International Biometric Society, vol. 78(2), pages 574-585, June.
    11. Chung, Jaewon & Bridgeford, Eric & Arroyo, Jesus & Pedigo, Benjamin D. & Saad-Eldin, Ali & Gopalakrishnan, Vivek & Xiang, Liang & Priebe, Carey E. & Vogelstein, Joshua T., 2020. "Statistical Connectomics," OSF Preprints ek4n3, Center for Open Science.
    12. Fang, Yixin & Wang, Junhui, 2011. "Penalized cluster analysis with applications to family data," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2128-2136, June.
    13. Athanasios Constantopoulos & John Yfantopoulos & Panos Xenos & Athanassios Vozikis, 2019. "Cluster shifts based on healthcare factors: The case of Greece in an OECD background 2009-2014," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 9(6), pages 1-4.
    14. Zhiguang Huo & Li Zhu & Tianzhou Ma & Hongcheng Liu & Song Han & Daiqing Liao & Jinying Zhao & George Tseng, 2020. "Two-Way Horizontal and Vertical Omics Integration for Disease Subtype Discovery," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(1), pages 1-22, April.
    15. Yi Peng & Yong Zhang & Gang Kou & Yong Shi, 2012. "A Multicriteria Decision Making Approach for Estimating the Number of Clusters in a Data Set," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    16. Nathalia Castellanos & Dhruv Desai & Sebastian Frank & Stefano Pasquali & Dhagash Mehta, 2024. "Can an unsupervised clustering algorithm reproduce a categorization system?," Papers 2408.10340, arXiv.org.
    17. Z. Volkovich & Z. Barzily & G.-W. Weber & D. Toledano-Kitai & R. Avros, 2012. "An application of the minimal spanning tree approach to the cluster stability problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(1), pages 119-139, March.
    18. Nilsen Gro & Borgan Ørnulf & LiestØl Knut & Lingjærde Ole Christian, 2013. "Identifying clusters in genomics data by recursive partitioning," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(5), pages 637-652, October.
    19. Weinand, J.M. & McKenna, R. & Fichtner, W., 2019. "Developing a municipality typology for modelling decentralised energy systems," Utilities Policy, Elsevier, vol. 57(C), pages 75-96.
    20. Seoung Bum Kim & Jung Woo Lee & Sin Young Kim & Deok Won Lee, 2013. "Dental Informatics to Characterize Patients with Dentofacial Deformities," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-8, August.

    More about this item

    Keywords

    Networks; Spectral Embedding; Clustering; Generalized Random Dot Product Graph; Stochastic Block Model;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cam:camdae:2455. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jake Dyer (email available below). General contact details of provider: https://www.econ.cam.ac.uk/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.