IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v198y2024ics0167947324000719.html
   My bibliography  Save this article

Spectral co-clustering in multi-layer directed networks

Author

Listed:
  • Su, Wenqing
  • Guo, Xiao
  • Chang, Xiangyu
  • Yang, Ying

Abstract

Modern network analysis often involves multi-layer network data in which the nodes are aligned, and the edges on each layer represent one of the multiple relations among the nodes. Current literature on multi-layer network data is mostly limited to undirected relations. However, direct relations are more common and may introduce extra information. This study focuses on community detection (or clustering) in multi-layer directed networks. To take into account the asymmetry, a novel spectral-co-clustering-based algorithm is developed to detect co-clusters, which capture the sending patterns and receiving patterns of nodes, respectively. Specifically, the eigendecomposition of the debiased sum of Gram matrices over the layer-wise adjacency matrices is computed, followed by the k-means, where the sum of Gram matrices is used to avoid possible cancellation of clusters caused by direct summation. Theoretical analysis of the algorithm under the multi-layer stochastic co-block model is provided, where the common assumption that the cluster number is coupled with the rank of the model is relaxed. After a systematic analysis of the eigenvectors of the population version algorithm, the misclassification rates are derived, which show that multi-layers would bring benefits to the clustering performance. The experimental results of simulated data corroborate the theoretical predictions, and the analysis of a real-world trade network dataset provides interpretable results.

Suggested Citation

  • Su, Wenqing & Guo, Xiao & Chang, Xiangyu & Yang, Ying, 2024. "Spectral co-clustering in multi-layer directed networks," Computational Statistics & Data Analysis, Elsevier, vol. 198(C).
  • Handle: RePEc:eee:csdana:v:198:y:2024:i:c:s0167947324000719
    DOI: 10.1016/j.csda.2024.107987
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947324000719
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2024.107987?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jianwei Hu & Hong Qin & Ting Yan & Yunpeng Zhao, 2020. "Corrected Bayesian Information Criterion for Stochastic Block Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(532), pages 1771-1783, December.
    2. Jingnan Zhang & Xin He & Junhui Wang, 2022. "Directed Community Detection With Network Embedding," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(540), pages 1809-1819, October.
    3. Jing Lei & Kehui Chen & Brian Lynch, 2020. "Consistent community detection in multi-layer network data," Biometrika, Biometrika Trust, vol. 107(1), pages 61-73.
    4. Fabio Rossa & Louis Pecora & Karen Blaha & Afroza Shirin & Isaac Klickstein & Francesco Sorrentino, 2020. "Symmetries and cluster synchronization in multilayer networks," Nature Communications, Nature, vol. 11(1), pages 1-17, December.
    5. Trygve E. Bakken & Jeremy A. Miller & Song-Lin Ding & Susan M. Sunkin & Kimberly A. Smith & Lydia Ng & Aaron Szafer & Rachel A. Dalley & Joshua J. Royall & Tracy Lemon & Sheila Shapouri & Kaylynn Aion, 2016. "A comprehensive transcriptional map of primate brain development," Nature, Nature, vol. 535(7612), pages 367-375, July.
    6. Jing Lei & Kevin Z. Lin, 2023. "Bias-Adjusted Spectral Clustering in Multi-Layer Stochastic Block Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(544), pages 2433-2445, October.
    7. Tianxi Li & Elizaveta Levina & Ji Zhu, 2020. "Network cross-validation by edge sampling," Biometrika, Biometrika Trust, vol. 107(2), pages 257-276.
    8. Manlio De Domenico & Vincenzo Nicosia & Alexandre Arenas & Vito Latora, 2015. "Structural reducibility of multilayer networks," Nature Communications, Nature, vol. 6(1), pages 1-9, November.
    9. P W MacDonald & E Levina & J Zhu, 2022. "Latent space models for multiplex networks with shared structure [Inference for multiple heterogeneous networks with a common invariant subspace]," Biometrika, Biometrika Trust, vol. 109(3), pages 683-706.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deng, Jiayi & Huang, Danyang & Ding, Yi & Zhu, Yingqiu & Jing, Bingyi & Zhang, Bo, 2024. "Subsampling spectral clustering for stochastic block models in large-scale networks," Computational Statistics & Data Analysis, Elsevier, vol. 189(C).
    2. Zou, Renhao & Zhang, Shuguang & He, Zhipeng & Hao, Chenlu, 2024. "Co-jumps in the Chinese stock market before, during and after the COVID-19 pandemic: A network perspective," Finance Research Letters, Elsevier, vol. 70(C).
    3. Fan, Xinyan & Fang, Kuangnan & Pu, Dan & Qin, Ruixuan, 2024. "Generalized latent space model for one-mode networks with awareness of two-mode networks," Computational Statistics & Data Analysis, Elsevier, vol. 193(C).
    4. Wu, Qianyong & Hu, Jiang, 2024. "Two-sample test of stochastic block models," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
    5. Charley Presigny & Marie-Constance Corsi & Fabrizio De Vico Fallani, 2024. "Node-layer duality in networked systems," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    6. Vainora, J., 2024. "Latent Position-Based Modeling of Parameter Heterogeneity," Cambridge Working Papers in Economics 2455, Faculty of Economics, University of Cambridge.
    7. Li, Mengxue & von Sachs, Rainer & Pircalabelu, Eugen, 2024. "Time-varying degree-corrected stochastic block models," LIDAM Discussion Papers ISBA 2024014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Jingnan Zhang & Chengye Li & Junhui Wang, 2023. "A stochastic block Ising model for multi‐layer networks with inter‐layer dependence," Biometrics, The International Biometric Society, vol. 79(4), pages 3564-3573, December.
    9. Zhu, Xuzhen & Wang, Ruijie & Wang, Zexun & Chen, Xiaolong & Wang, Wei & Cai, Shimin, 2019. "Double-edged sword effect of edge overlap on asymmetrically interacting spreading dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 617-624.
    10. Samuel S. Kim & Buu Truong & Karthik Jagadeesh & Kushal K. Dey & Amber Z. Shen & Soumya Raychaudhuri & Manolis Kellis & Alkes L. Price, 2024. "Leveraging single-cell ATAC-seq and RNA-seq to identify disease-critical fetal and adult brain cell types," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Yong Cai, 2022. "Linear Regression with Centrality Measures," Papers 2210.10024, arXiv.org.
    12. Nguyen, Tung T. & Budzinski, Roberto C. & Pasini, Federico W. & Delabays, Robin & Mináč, Ján & Muller, Lyle E., 2023. "Broadcasting solutions on networked systems of phase oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    13. Tingting Bo & Jie Li & Ganlu Hu & Ge Zhang & Wei Wang & Qian Lv & Shaoling Zhao & Junjie Ma & Meng Qin & Xiaohui Yao & Meiyun Wang & Guang-Zhong Wang & Zheng Wang, 2023. "Brain-wide and cell-specific transcriptomic insights into MRI-derived cortical morphology in macaque monkeys," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Schlembach, Christoph & Schmidt, Sascha L. & Schreyer, Dominik & Wunderlich, Linus, 2022. "Forecasting the Olympic medal distribution – A socioeconomic machine learning model," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    15. Fengqin Tang & Cuixia Li & Chungning Wang & Yi Yang & Xuejing Zhao, 2024. "A comprehensive framework for link prediction in multiplex networks," Computational Statistics, Springer, vol. 39(2), pages 939-961, April.
    16. Fan, Hongguang & Shi, Kaibo & Zhao, Yi, 2022. "Pinning impulsive cluster synchronization of uncertain complex dynamical networks with multiple time-varying delays and impulsive effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    17. Jing Yang & Disheng Yi & Jingjing Liu & Yusi Liu & Jing Zhang, 2019. "Spatiotemporal Change Characteristics of Nodes’ Heterogeneity in the Directed and Weighted Spatial Interaction Networks: Case Study within the Sixth Ring Road of Beijing, China," Sustainability, MDPI, vol. 11(22), pages 1-15, November.
    18. Li, Liqiang & Liu, Jing, 2020. "The aggregation of multiplex networks based on the similarity of networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    19. Yu, Guihai & Jiao, Yang & Dehmer, Matthias & Emmert-Streib, Frank, 2024. "Community detection in directed networks based on network embeddings," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    20. Md Sayeed Anwar & Dibakar Ghosh & Nikita Frolov, 2021. "Relay Synchronization in a Weighted Triplex Network," Mathematics, MDPI, vol. 9(17), pages 1-10, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:198:y:2024:i:c:s0167947324000719. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.