IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v660y2025ics0378437124008409.html
   My bibliography  Save this article

Comprehensive analysis of the crypto-assets market through multivariate analysis, clustering, and wavelet decomposition

Author

Listed:
  • Álvarez, Emiliano
  • Brida, Juan Gabriel
  • Moreno, Leonardo
  • Sosa, Andrés

Abstract

This research analyzes the relationship between volatility, traded volume and price in the crypto-assets market. First, the relationship between volatility and traded volume is examined, revealing a positive correlation between the two variables across a large number of crypto-assets. This indicates that increased trading volume coincides with increased volatility in crypto-assets prices, an important attribute in a highly volatile financial market. A wavelet analysis is performed in order to cluster crypto-assets according to their price and/or traded volume. It is found that the two main crypto-assets are in the same cluster when only the price variable is analyzed. However, when adding the traded volume variable to the analysis these two crypto-assets separate. This suggests that Bitcoin and Ethereum have similar behavior in price evolution but when analyzed comprehensively their behavior is heterogeneous. This analysis is carried out using a static approach and the results are contrasted using a dynamic approach by studying the evolution of the clusters over time. The results are important for investors seeking to diversify their trading portfolios with the instantaneous information provided by the market (price and volume). Through understanding the relationship between volatility, traded volume and price, investors can make more informed decisions about where to allocate their capital.

Suggested Citation

  • Álvarez, Emiliano & Brida, Juan Gabriel & Moreno, Leonardo & Sosa, Andrés, 2025. "Comprehensive analysis of the crypto-assets market through multivariate analysis, clustering, and wavelet decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 660(C).
  • Handle: RePEc:eee:phsmap:v:660:y:2025:i:c:s0378437124008409
    DOI: 10.1016/j.physa.2024.130330
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124008409
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.130330?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Melino, Angelo & Turnbull, Stuart M., 1990. "Pricing foreign currency options with stochastic volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 239-265.
    2. Fousekis, Panos & Tzaferi, Dimitra, 2021. "Returns and volume: Frequency connectedness in cryptocurrency markets," Economic Modelling, Elsevier, vol. 95(C), pages 13-20.
    3. Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Pawe{l} O'swik{e}cimka & Tomasz Stanisz & Marcin Wk{a}torek, 2020. "Complexity in economic and social systems: cryptocurrency market at around COVID-19," Papers 2009.10030, arXiv.org.
    4. Aysan, Ahmet Faruk & Demir, Ender & Gozgor, Giray & Lau, Chi Keung Marco, 2019. "Effects of the geopolitical risks on Bitcoin returns and volatility," Research in International Business and Finance, Elsevier, vol. 47(C), pages 511-518.
    5. Stephen J. Taylor, 1994. "Modeling Stochastic Volatility: A Review And Comparative Study," Mathematical Finance, Wiley Blackwell, vol. 4(2), pages 183-204, April.
    6. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    7. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    8. Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek, 2020. "Multiscale characteristics of the emerging global cryptocurrency market," Papers 2010.15403, arXiv.org, revised Mar 2021.
    9. Song, Jung Yoon & Chang, Woojin & Song, Jae Wook, 2019. "Cluster analysis on the structure of the cryptocurrency market via Bitcoin–Ethereum filtering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    10. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    11. Bouri, Elie & Lau, Chi Keung Marco & Lucey, Brian & Roubaud, David, 2019. "Trading volume and the predictability of return and volatility in the cryptocurrency market," Finance Research Letters, Elsevier, vol. 29(C), pages 340-346.
    12. Hau, Liya & Zhu, Huiming & Shahbaz, Muhammad & Sun, Wuqin, 2021. "Does transaction activity predict Bitcoin returns? Evidence from quantile-on-quantile analysis," The North American Journal of Economics and Finance, Elsevier, vol. 55(C).
    13. Yarovaya, Larisa & Zięba, Damian, 2022. "Intraday volume-return nexus in cryptocurrency markets: Novel evidence from cryptocurrency classification," Research in International Business and Finance, Elsevier, vol. 60(C).
    14. Blau, Benjamin M., 2018. "Price dynamics and speculative trading in Bitcoin," Research in International Business and Finance, Elsevier, vol. 43(C), pages 15-21.
    15. Kastner, Gregor, 2016. "Dealing with Stochastic Volatility in Time Series Using the R Package stochvol," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 69(i05).
    16. Kastner, Gregor & Frühwirth-Schnatter, Sylvia, 2014. "Ancillarity-sufficiency interweaving strategy (ASIS) for boosting MCMC estimation of stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 408-423.
    17. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    18. Balcilar, Mehmet & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2017. "Can volume predict Bitcoin returns and volatility? A quantiles-based approach," Economic Modelling, Elsevier, vol. 64(C), pages 74-81.
    19. Chu, Jeffrey & Chan, Stephen & Zhang, Yuanyuan, 2023. "An analysis of the return–volume relationship in decentralised finance (DeFi)," International Review of Economics & Finance, Elsevier, vol. 85(C), pages 236-254.
    20. Salisu, Afees A. & Ogbonna, Ahamuefula E., 2022. "The return volatility of cryptocurrencies during the COVID-19 pandemic: Assessing the news effect," Global Finance Journal, Elsevier, vol. 54(C).
    21. Akyildirim, Erdinc & Corbet, Shaen & Lucey, Brian & Sensoy, Ahmet & Yarovaya, Larisa, 2020. "The relationship between implied volatility and cryptocurrency returns," Finance Research Letters, Elsevier, vol. 33(C).
    22. Leirvik, Thomas, 2022. "Cryptocurrency returns and the volatility of liquidity," Finance Research Letters, Elsevier, vol. 44(C).
    23. Jin‐Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32, January.
    24. C. Baek & M. Elbeck, 2015. "Bitcoins as an investment or speculative vehicle? A first look," Applied Economics Letters, Taylor & Francis Journals, vol. 22(1), pages 30-34, January.
    25. Sourav Chatterjee, 2021. "A New Coefficient of Correlation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 2009-2022, October.
    26. Ji, Qiang & Bouri, Elie & Lau, Chi Keung Marco & Roubaud, David, 2019. "Dynamic connectedness and integration in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 257-272.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Anas & Syed Jawad Hussain Shahzad & Larisa Yarovaya, 2024. "The use of high-frequency data in cryptocurrency research: a meta-review of literature with bibliometric analysis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-31, December.
    2. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    3. Bergsli, Lykke Øverland & Lind, Andrea Falk & Molnár, Peter & Polasik, Michał, 2022. "Forecasting volatility of Bitcoin," Research in International Business and Finance, Elsevier, vol. 59(C).
    4. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    5. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    6. Willy Alanya & Gabriel Rodríguez, 2018. "Stochastic Volatility in the Peruvian Stock Market and Exchange Rate Returns: A Bayesian Approximation," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 17(3), pages 354-385, December.
    7. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    8. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    10. Jinxin Cui & Aktham Maghyereh, 2022. "Time–frequency co-movement and risk connectedness among cryptocurrencies: new evidence from the higher-order moments before and during the COVID-19 pandemic," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-56, December.
    11. Chu, Jeffrey & Chan, Stephen & Zhang, Yuanyuan, 2023. "An analysis of the return–volume relationship in decentralised finance (DeFi)," International Review of Economics & Finance, Elsevier, vol. 85(C), pages 236-254.
    12. Trucíos, Carlos, 2019. "Forecasting Bitcoin risk measures: A robust approach," International Journal of Forecasting, Elsevier, vol. 35(3), pages 836-847.
    13. Robert F. Engle & Joshua Rosenberg, 1966. "Testing the Volatility Term Structure Using Option Hedging Criteria," New York University, Leonard N. Stern School Finance Department Working Paper Seires 96-24, New York University, Leonard N. Stern School of Business-.
    14. Agata Kliber, 2016. "The leverage effect puzzle: the case of European sovereign credit default swap market," Review of Derivatives Research, Springer, vol. 19(3), pages 217-235, October.
    15. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    16. Theodore Panagiotidis & Georgios Papapanagiotou, 2024. "A note on the determinants of NFTs returns," Working Paper series 24-07, Rimini Centre for Economic Analysis.
    17. Zhao, Yixiu & Upreti, Vineet & Cai, Yuzhi, 2021. "Stock returns, quantile autocorrelation, and volatility forecasting," International Review of Financial Analysis, Elsevier, vol. 73(C).
    18. İbrahim Korkmaz KAHRAMAN, Habib KÜÇÜKŞAHİN, Emin ÇAĞLAK, 2019. "The Volatility Structure of Cryptocurrencies: The Comparison of GARCH Models," Fiscaoeconomia, Tubitak Ulakbim JournalPark (Dergipark), issue 2.
    19. Nick James & Max Menzies, 2023. "Collective dynamics, diversification and optimal portfolio construction for cryptocurrencies," Papers 2304.08902, arXiv.org, revised Jun 2023.
    20. Będowska-Sójka, Barbara & Górka, Joanna & Hemmings, Danial & Zaremba, Adam, 2024. "Uncertainty and cryptocurrency returns: A lesson from turbulent times," International Review of Financial Analysis, Elsevier, vol. 94(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:660:y:2025:i:c:s0378437124008409. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.