Quantifying the information lost in optimal covariance matrix cleaning
Author
Abstract
Suggested Citation
DOI: 10.1016/j.physa.2024.130225
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Christian Bongiorno & Damien Challet, 2021.
"Covariance matrix filtering with bootstrapped hierarchies,"
PLOS ONE, Public Library of Science, vol. 16(1), pages 1-13, January.
- Christian Bongiorno & Damien Challet, 2020. "Covariance matrix filtering with bootstrapped hierarchies," Papers 2003.05807, arXiv.org.
- Christian Bongiorno & Damien Challet, 2021. "Covariance matrix filtering with bootstrapped hierarchies," Post-Print hal-02506848, HAL.
- Olivier Ledoit & Michael Wolf, 2022. "The Power of (Non-)Linear Shrinking: A Review and Guide to Covariance Matrix Estimation [Design-Free Estimation of Variance Matrices]," Journal of Financial Econometrics, Oxford University Press, vol. 20(1), pages 187-218.
- Ledoit, Olivier & Wolf, Michael, 2017.
"Numerical implementation of the QuEST function,"
Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 199-223.
- Olivier Ledoit & Michael Wolf, 2016. "Numerical implementation of the QuEST function," ECON - Working Papers 215, Department of Economics - University of Zurich, revised Jan 2017.
- Meng, Rui & Yang, Fan & Kim, Won Hwa, 2023. "Dynamic covariance estimation via predictive Wishart process with an application on brain connectivity estimation," Computational Statistics & Data Analysis, Elsevier, vol. 185(C).
- Joël Bun & Jean-Philippe Bouchaud & Marc Potters, 2017. "Cleaning large correlation matrices: tools from random matrix theory," Post-Print hal-01491304, HAL.
- Contreras-Reyes, Javier E., 2014. "Asymptotic form of the Kullback–Leibler divergence for multivariate asymmetric heavy-tailed distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 200-208.
- Christian Bongiorno & Damien Challet, 2022.
"Reactive global minimum variance portfolios with k-BAHC covariance cleaning,"
The European Journal of Finance, Taylor & Francis Journals, vol. 28(13-15), pages 1344-1360, October.
- Christian Bongiorno & Damien Challet, 2020. "Reactive Global Minimum Variance Portfolios with $k-$BAHC covariance cleaning," Papers 2005.08703, arXiv.org, revised Mar 2023.
- Christian Bongiorno & Damien Challet, 2021. "Reactive Global Minimum Variance Portfolios with $k-$BAHC covariance cleaning," Post-Print hal-02612262, HAL.
- Touloumis, Anestis, 2015. "Nonparametric Stein-type shrinkage covariance matrix estimators in high-dimensional settings," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 251-261.
- Gianluca De Nard & Olivier Ledoit & Michael Wolf, 2021. "Factor Models for Portfolio Selection in Large Dimensions: The Good, the Better and the Ugly [Using Principal Component Analysis to Estimate a High Dimensional Factor Model with High-frequency Data," Journal of Financial Econometrics, Oxford University Press, vol. 19(2), pages 236-257.
- Bigot, Jérémie & Deledalle, Charles, 2022. "Low-rank matrix denoising for count data using unbiased Kullback-Leibler risk estimation," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
- M. Tumminello & F. Lillo & R. N. Mantegna, 2007. "Shrinkage and spectral filtering of correlation matrices: a comparison via the Kullback-Leibler distance," Papers 0710.0576, arXiv.org.
- repec:dau:papers:123456789/11431 is not listed on IDEAS
- Christian Bongiorno & Marco Berritta, 2023. "Optimal Covariance Cleaning for Heavy-Tailed Distributions: Insights from Information Theory," Papers 2304.14098, arXiv.org, revised Apr 2023.
- Bongiorno, Christian & Challet, Damien, 2023.
"Non-linear shrinkage of the price return covariance matrix is far from optimal for portfolio optimization,"
Finance Research Letters, Elsevier, vol. 52(C).
- Christian Bongiorno & Damien Challet, 2021. "Non-linear shrinkage of the price return covariance matrix is far from optimal for portfolio optimisation," Papers 2112.07521, arXiv.org, revised Oct 2022.
- Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
- Michele Tumminello & Fabrizio Lillo & Rosario Nunzio Mantegna, 2007. "Kullback-Leibler distance as a measure of the information filtered from multivariate data," Papers 0706.0168, arXiv.org.
- Fan, Jianqing & Fan, Yingying & Lv, Jinchi, 2008. "High dimensional covariance matrix estimation using a factor model," Journal of Econometrics, Elsevier, vol. 147(1), pages 186-197, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mörstedt, Torsten & Lutz, Bernhard & Neumann, Dirk, 2024. "Cross validation based transfer learning for cross-sectional non-linear shrinkage: A data-driven approach in portfolio optimization," European Journal of Operational Research, Elsevier, vol. 318(2), pages 670-685.
- Jin Yuan & Xianghui Yuan, 2023. "A Best Linear Empirical Bayes Method for High-Dimensional Covariance Matrix Estimation," SAGE Open, , vol. 13(2), pages 21582440231, June.
- Anatolyev, Stanislav & Pyrlik, Vladimir, 2022. "Copula shrinkage and portfolio allocation in ultra-high dimensions," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
- De Nard, Gianluca & Zhao, Zhao, 2023. "Using, taming or avoiding the factor zoo? A double-shrinkage estimator for covariance matrices," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 23-35.
- Jianqing Fan & Donggyu Kim & Minseok Shin & Yazhen Wang, 2024. "Factor and Idiosyncratic VAR-Ito Volatility Models for Heavy-Tailed High-Frequency Financial Data," Working Papers 202415, University of California at Riverside, Department of Economics.
- Lamia Lamrani & Christian Bongiorno & Marc Potters, 2025. "Optimal Data Splitting for Holdout Cross-Validation in Large Covariance Matrix Estimation," Papers 2503.15186, arXiv.org.
- Esra Ulasan & A. Özlem Önder, 2023. "Large portfolio optimisation approaches," Journal of Asset Management, Palgrave Macmillan, vol. 24(6), pages 485-497, October.
- Bongiorno, Christian & Challet, Damien, 2023.
"Non-linear shrinkage of the price return covariance matrix is far from optimal for portfolio optimization,"
Finance Research Letters, Elsevier, vol. 52(C).
- Christian Bongiorno & Damien Challet, 2021. "Non-linear shrinkage of the price return covariance matrix is far from optimal for portfolio optimisation," Papers 2112.07521, arXiv.org, revised Oct 2022.
- Ikeda, Yuki & Kubokawa, Tatsuya, 2016. "Linear shrinkage estimation of large covariance matrices using factor models," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 61-81.
- Wu, Yunlin & Huang, Lei & Jiang, Hui, 2023. "Optimization of large portfolio allocation for new-energy stocks: Evidence from China," Energy, Elsevier, vol. 285(C).
- Yan Zhang & Jiyuan Tao & Zhixiang Yin & Guoqiang Wang, 2022. "Improved Large Covariance Matrix Estimation Based on Efficient Convex Combination and Its Application in Portfolio Optimization," Mathematics, MDPI, vol. 10(22), pages 1-15, November.
- Rafael Alves & Diego S. de Brito & Marcelo C. Medeiros & Ruy M. Ribeiro, 2023. "Forecasting Large Realized Covariance Matrices: The Benefits of Factor Models and Shrinkage," Papers 2303.16151, arXiv.org.
- De Nard, Gianluca & Zhao, Zhao, 2022. "A large-dimensional test for cross-sectional anomalies:Efficient sorting revisited," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 654-676.
- Fan, Qingliang & Wu, Ruike & Yang, Yanrong & Zhong, Wei, 2024. "Time-varying minimum variance portfolio," Journal of Econometrics, Elsevier, vol. 239(2).
- Joel Bun & Jean-Philippe Bouchaud & Marc Potters, 2016. "Cleaning large correlation matrices: tools from random matrix theory," Papers 1610.08104, arXiv.org.
- Fan, Jianqing & Liao, Yuan & Shi, Xiaofeng, 2015.
"Risks of large portfolios,"
Journal of Econometrics, Elsevier, vol. 186(2), pages 367-387.
- Jianqing Fan & Yuan Liao & Xiaofeng Shi, 2013. "Risks of Large Portfolios," Papers 1302.0926, arXiv.org.
- Fan, Jianqing & Liao, Yuan & Shi, Xiaofeng, 2013. "Risks of large portfolios," MPRA Paper 44206, University Library of Munich, Germany.
- Olivier Ledoit & Michael Wolf, 2022. "Markowitz portfolios under transaction costs," ECON - Working Papers 420, Department of Economics - University of Zurich, revised Sep 2024.
- Tae-Hwy Lee & Ekaterina Seregina, 2024.
"Optimal Portfolio Using Factor Graphical Lasso,"
Journal of Financial Econometrics, Oxford University Press, vol. 22(3), pages 670-695.
- Tae-Hwy Lee & Ekaterina Seregina, 2020. "Optimal Portfolio Using Factor Graphical Lasso," Working Papers 202025, University of California at Riverside, Department of Economics.
- Tae-Hwy Lee & Ekaterina Seregina, 2023. "Optimal Portfolio Using Factor Graphical Lasso," Working Papers 202302, University of California at Riverside, Department of Economics.
- Tae-Hwy Lee & Ekaterina Seregina, 2020. "Optimal Portfolio Using Factor Graphical Lasso," Papers 2011.00435, arXiv.org, revised Apr 2023.
- Gianluca De Nard & Robert F. Engle & Bryan Kelly, 2024.
"Factor-Mimicking Portfolios for Climate Risk,"
Financial Analysts Journal, Taylor & Francis Journals, vol. 80(3), pages 37-58, July.
- Gianluca De Nard & Robert F. Engle & Bryan Kelly, 2023. "Factor mimicking portfolios for climate risk," ECON - Working Papers 429, Department of Economics - University of Zurich, revised Mar 2024.
- Yilie Huang & Yanwei Jia & Xun Yu Zhou, 2024. "Mean--Variance Portfolio Selection by Continuous-Time Reinforcement Learning: Algorithms, Regret Analysis, and Empirical Study," Papers 2412.16175, arXiv.org.
More about this item
Keywords
Random matrix theory; Covariance matrix estimation; Genetic regressor programming; High-dimension statistics; Information theory;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:657:y:2025:i:c:s0378437124007349. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.