IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v608y2022ip1s0378437122008408.html
   My bibliography  Save this article

A dynamics model of two kinds of knowledge transmission on duplex networks

Author

Listed:
  • Zhu, Hongmiao
  • Jin, Zhen
  • Yan, Xin

Abstract

First, we consider the complex system composed of two kinds of knowledge transmitted by individuals in an organization as a set of duplex networks, which including two sub-networks, one consisting of individuals disseminating one kind of knowledge through online and offline channels, and the other sub-network consisting of individuals disseminating the other kind of knowledge through the two channels. On this basis, we establish a s1i1r1i1−s2i2r2i2 dynamics model of two kinds of knowledge transmission on duplex networks. Second, we obtain the threshold to distinguish whether one kind of knowledge is continuously spread or not through the two channels in the organization, and verify that our model fits well with the actual data. Finally, we conduct the numerical simulations on the process of two kinds of knowledge transmission through online and offline channels. The simulations indicate that: (1) If one kind of knowledge is transmitted online too many times for individuals in unit time, it will likely lead to the gradual loss of the other kind of knowledge in the organization. Each kind of knowledge should be disseminated online moderately for individuals so that both kinds of knowledge can be continuously spread. (2) The transmission of each kind of knowledge is more efficient in the scale-free (online)–homogeneous (offline) sub-network when there is facilitation between the dissemination of two kinds of knowledge. When there is competition between two kinds of knowledge dissemination in the same group, the time of transmission to stabilize in the scale-free (online)–homogeneous (offline) sub-network is shorter, but the final scale of transmission in the homogeneous (online)–homogeneous (offline) sub-network is larger for each kind of knowledge.

Suggested Citation

  • Zhu, Hongmiao & Jin, Zhen & Yan, Xin, 2022. "A dynamics model of two kinds of knowledge transmission on duplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
  • Handle: RePEc:eee:phsmap:v:608:y:2022:i:p1:s0378437122008408
    DOI: 10.1016/j.physa.2022.128282
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122008408
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.128282?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jinlong Ma & Zishuo An & Yi Zhou & Yi Zhang & Xiangyang Xu & Sufeng Li, 2022. "Traffic dynamics on homogeneous networks with community structure," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 33(04), pages 1-13, April.
    2. Cowan, Robin & Jonard, Nicolas, 2004. "Network structure and the diffusion of knowledge," Journal of Economic Dynamics and Control, Elsevier, vol. 28(8), pages 1557-1575, June.
    3. Jinlong Ma & Zishuo An & Yi Zhou & Yi Zhang & Xiangyang Xu & Sufeng Li, 2022. "Traffic dynamics on homogeneous networks with community structure," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 33(04), pages 1-13, April.
    4. Kiss, Istvan Z. & Broom, Mark & Craze, Paul G. & Rafols, Ismael, 2010. "Can epidemic models describe the diffusion of topics across disciplines?," Journal of Informetrics, Elsevier, vol. 4(1), pages 74-82.
    5. Wang, Haiying & Wang, Jun & Small, Michael & Moore, Jack Murdoch, 2019. "Review mechanism promotes knowledge transmission in complex networks," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 113-125.
    6. Wang, Yi & Jin, Zhen, 2013. "Global analysis of multiple routes of disease transmission on heterogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 3869-3880.
    7. Wang, Haiying & Wang, Jun & Ding, Liting & Wei, Wei, 2017. "Knowledge transmission model with consideration of self-learning mechanism in complex networks," Applied Mathematics and Computation, Elsevier, vol. 304(C), pages 83-92.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Hongmiao & Jin, Zhen, 2023. "A dynamics model of knowledge dissemination in a WeChat Group from perspective of duplex networks," Applied Mathematics and Computation, Elsevier, vol. 454(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Haiying & Moore, Jack Murdoch & Wang, Jun & Small, Michael, 2021. "The distinct roles of initial transmission and retransmission in the persistence of knowledge in complex networks," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    2. Zhu, Hongmiao & Jin, Zhen, 2023. "A dynamics model of knowledge dissemination in a WeChat Group from perspective of duplex networks," Applied Mathematics and Computation, Elsevier, vol. 454(C).
    3. Liao, Shi-Gen & Yi, Shu-Ping, 2021. "Modeling and analyzing knowledge transmission process considering free-riding behavior of knowledge acquisition: A waterborne disease approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 569(C).
    4. Liao, Shi-Gen & Yi, Shu-Ping, 2021. "Modeling and analysis knowledge transmission process in complex networks by considering internalization mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    5. Zhu, He & Ma, Jing, 2018. "Knowledge diffusion in complex networks by considering time-varying information channels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 225-235.
    6. Song, Le & Ma, Yinghong, 2022. "Evaluating tacit knowledge diffusion with algebra matrix algorithm based social networks," Applied Mathematics and Computation, Elsevier, vol. 428(C).
    7. Wang, Haiying & Wang, Jun & Small, Michael, 2018. "Knowledge transmission model with differing initial transmission and retransmission process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 478-488.
    8. Wang, Haiying & Wang, Jun & Small, Michael & Moore, Jack Murdoch, 2019. "Review mechanism promotes knowledge transmission in complex networks," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 113-125.
    9. Wang, Sixin & Mei, Jun & Xia, Dan & Yang, Zhanying & Hu, Junhao, 2022. "Finite-time optimal feedback control mechanism for knowledge transmission in complex networks via model predictive control," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    10. Wang, Haiying & Moore, Jack Murdoch & Small, Michael & Wang, Jun & Yang, Huijie & Gu, Changgui, 2022. "Epidemic dynamics on higher-dimensional small world networks," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    11. Zhu, Hongmiao & Wang, Yumie & Yan, Xin & Jin, Zhen, 2022. "Research on knowledge dissemination model in the multiplex network with enterprise social media and offline transmission routes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    12. Cao, Bin & Han, Shui-hua & Jin, Zhen, 2016. "Modeling of knowledge transmission by considering the level of forgetfulness in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 277-287.
    13. Stephen Chen, 2009. "Corporate Responsibilities in Internet-Enabled Social Networks," Journal of Business Ethics, Springer, vol. 90(4), pages 523-536, December.
    14. Anil K. Gupta & Paul E. Tesluk & M. Susan Taylor, 2007. "Innovation At and Across Multiple Levels of Analysis," Organization Science, INFORMS, vol. 18(6), pages 885-897, December.
    15. Daniele Cassese & Paolo Pin, 2018. "Decentralized Pure Exchange Processes on Networks," Papers 1803.08836, arXiv.org, revised Mar 2022.
    16. Liming Zhao & Haihong Zhang & Wenqing Wu, 2019. "Cooperative knowledge creation in an uncertain network environment based on a dynamic knowledge supernetwork," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 657-685, May.
    17. Rafols, Ismael & Leydesdorff, Loet & O’Hare, Alice & Nightingale, Paul & Stirling, Andy, 2012. "How journal rankings can suppress interdisciplinary research: A comparison between Innovation Studies and Business & Management," Research Policy, Elsevier, vol. 41(7), pages 1262-1282.
    18. Cantner, Uwe & Graf, Holger, 2006. "The network of innovators in Jena: An application of social network analysis," Research Policy, Elsevier, vol. 35(4), pages 463-480, May.
    19. Stefano Usai & Emanuela Marrocu & Raffaele Paci, 2017. "Networks, Proximities, and Interfirm Knowledge Exchanges," International Regional Science Review, , vol. 40(4), pages 377-404, July.
    20. Yi, Yinxue & Zhang, Zufan & Gan, Chenquan, 2018. "The effect of social tie on information diffusion in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 783-794.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:608:y:2022:i:p1:s0378437122008408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.