IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v542y2020ics0378437119318965.html
   My bibliography  Save this article

Theoretical conditions for restricting secondary jams in jam-absorption driving scenarios

Author

Listed:
  • Nishi, Ryosuke

Abstract

There has been considerable interest in the active maneuvers made by a small number of vehicles to improve macroscopic traffic flows. Jam-absorption driving (JAD) is a single vehicle’s maneuvers to remove a wide moving jam and consists of two actions. First, a vehicle upstream of the jam slows down and maintains a low velocity. Because it cuts off the supply of vehicles to the jam, the jam shrinks and finally disappears. Second, it returns to following the vehicle ahead of it. One of the critical problems of JAD is the occurrence of secondary jams. The perturbations caused by JAD actions may grow into secondary jams due to the instability of traffic flows. The occurrence of secondary jams was investigated by numerical simulations in non-periodic systems where only human-driven vehicles are placed upstream of the vehicle performing JAD. However, no theoretical condition has been proposed to restrict secondary jams in these systems. This paper presents a theoretical condition restricting secondary jams in a semi-infinite system composed of a vehicle performing JAD and the other human-driven vehicles obeying a car-following model on a non-periodic and single-lane road. In constructing this condition, we apply the linear string stability to a macroscopic spatiotemporal structure of JAD. Numerical simulations show that a finite version of this condition restricts secondary jams. Moreover, under this condition, we demonstrate that it is possible to restrict secondary jams in the semi-infinite system under wide ranges of the parameters of the system. We also extend this condition to a condition with a time lag for estimating the characteristics of the jam, and reveal the influence of the time lag on the behavior of the system. Furthermore, we construct the conditions suppressing secondary jams in other semi-infinite systems with inflows from other lanes or a bottleneck, and demonstrate that JAD can restrict secondary jams in these systems. Thus, our method theoretically guarantees that a single vehicle can improve macroscopic traffic flows.

Suggested Citation

  • Nishi, Ryosuke, 2020. "Theoretical conditions for restricting secondary jams in jam-absorption driving scenarios," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
  • Handle: RePEc:eee:phsmap:v:542:y:2020:i:c:s0378437119318965
    DOI: 10.1016/j.physa.2019.123393
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119318965
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.123393?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rodrigo C. Carlson & Ioannis Papamichail & Markos Papageorgiou & Albert Messmer, 2010. "Optimal Motorway Traffic Flow Control Involving Variable Speed Limits and Ramp Metering," Transportation Science, INFORMS, vol. 44(2), pages 238-253, May.
    2. Paul I. Richards, 1956. "Shock Waves on the Highway," Operations Research, INFORMS, vol. 4(1), pages 42-51, February.
    3. Han, Youngjun & Chen, Danjue & Ahn, Soyoung, 2017. "Variable speed limit control at fixed freeway bottlenecks using connected vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 113-134.
    4. Taniguchi, Yohei & Nishi, Ryosuke & Ezaki, Takahiro & Nishinari, Katsuhiro, 2015. "Jam-absorption driving with a car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 304-315.
    5. Li, Li & Li, Xiaopeng, 2019. "Parsimonious trajectory design of connected automated traffic," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 1-21.
    6. Taylor, Jeffrey & Zhou, Xuesong & Rouphail, Nagui M. & Porter, Richard J., 2015. "Method for investigating intradriver heterogeneity using vehicle trajectory data: A Dynamic Time Warping approach," Transportation Research Part B: Methodological, Elsevier, vol. 73(C), pages 59-80.
    7. Treiber, Martin & Kanagaraj, Venkatesan, 2015. "Comparing numerical integration schemes for time-continuous car-following models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 183-195.
    8. Jiang, Rui & Hu, Mao-Bin & Zhang, H.M. & Gao, Zi-You & Jia, Bin & Wu, Qing-Song, 2015. "On some experimental features of car-following behavior and how to model them," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 338-354.
    9. Nishi, Ryosuke & Tomoeda, Akiyasu & Shimura, Kenichiro & Nishinari, Katsuhiro, 2013. "Theory of jam-absorption driving," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 116-129.
    10. Laval, Jorge A. & Toth, Christopher S. & Zhou, Yi, 2014. "A parsimonious model for the formation of oscillations in car-following models," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 228-238.
    11. Chen, Danjue & Ahn, Soyoung & Hegyi, Andreas, 2014. "Variable speed limit control for steady and oscillatory queues at fixed freeway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 340-358.
    12. D. Helbing & M. Moussaid, 2009. "Analytical calculation of critical perturbation amplitudes and critical densities by non-linear stability analysis of a simple traffic flow model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 69(4), pages 571-581, June.
    13. Wagner, Peter, 2012. "Analyzing fluctuations in car-following," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1384-1392.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nishi, Ryosuke & Watanabe, Takashi, 2022. "System-size dependence of a jam-absorption driving strategy to remove traffic jam caused by a sag under the presence of traffic instability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nishi, Ryosuke & Watanabe, Takashi, 2022. "System-size dependence of a jam-absorption driving strategy to remove traffic jam caused by a sag under the presence of traffic instability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    2. Han, Youngjun & Chen, Danjue & Ahn, Soyoung, 2017. "Variable speed limit control at fixed freeway bottlenecks using connected vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 113-134.
    3. Yu Wang & Xiaopeng Li & Junfang Tian & Rui Jiang, 2020. "Stability Analysis of Stochastic Linear Car-Following Models," Transportation Science, INFORMS, vol. 54(1), pages 274-297, January.
    4. Tian, Junfang & Li, Guangyu & Treiber, Martin & Jiang, Rui & Jia, Ning & Ma, Shoufeng, 2016. "Cellular automaton model simulating spatiotemporal patterns, phase transitions and concave growth pattern of oscillations in traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 560-575.
    5. Zhou, Yang & Ahn, Soyoung & Wang, Meng & Hoogendoorn, Serge, 2020. "Stabilizing mixed vehicular platoons with connected automated vehicles: An H-infinity approach," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 152-170.
    6. Ito, Kotaro & Nishi, Ryosuke, 2023. "Influence of self-disassembly of bridges on collective flow characteristics of swarm robots in a single-lane and periodic system with a gap," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    7. Tian, Junfang & Zhu, Chenqiang & Chen, Danjue & Jiang, Rui & Wang, Guanying & Gao, Ziyou, 2021. "Car following behavioral stochasticity analysis and modeling: Perspective from wave travel time," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 160-176.
    8. Martínez, Irene & Jin, Wen-Long, 2020. "Optimal location problem for variable speed limit application areas," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 221-246.
    9. Bouadi, Marouane & Jia, Bin & Jiang, Rui & Li, Xingang & Gao, Zi-You, 2022. "Stability analysis of stochastic second-order macroscopic continuum models and numerical simulations," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 193-209.
    10. Reilly, Jack & Martin, Sébastien & Payer, Mathias & Bayen, Alexandre M., 2016. "Creating complex congestion patterns via multi-objective optimal freeway traffic control with application to cyber-security," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 366-382.
    11. Han, Youngjun & Ahn, Soyoung, 2018. "Stochastic modeling of breakdown at freeway merge bottleneck and traffic control method using connected automated vehicle," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 146-166.
    12. Gao, Hang & Chen, Shenyang & Zhang, Michael, 2020. "Get More Out of Variable Speed Limit (VSL) Control: An Integrated Approach to Manage Traffic Corridors with Multiple Bottlenecks," Institute of Transportation Studies, Working Paper Series qt6th037wz, Institute of Transportation Studies, UC Davis.
    13. Taniguchi, Yohei & Nishi, Ryosuke & Ezaki, Takahiro & Nishinari, Katsuhiro, 2015. "Jam-absorption driving with a car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 304-315.
    14. Yuan, Tianchen & Ioannou, Petros A., 2023. "Coordinated Traffic Flow Control in a Connected Environment," Institute of Transportation Studies, Working Paper Series qt6q67f9z4, Institute of Transportation Studies, UC Davis.
    15. Tian, Junfang & Treiber, Martin & Ma, Shoufeng & Jia, Bin & Zhang, Wenyi, 2015. "Microscopic driving theory with oscillatory congested states: Model and empirical verification," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 138-157.
    16. Jiang, Rui & Hu, Mao-Bin & Zhang, H.M. & Gao, Zi-You & Jia, Bin & Wu, Qing-Song, 2015. "On some experimental features of car-following behavior and how to model them," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 338-354.
    17. Sheu, Jiuh-Biing & Wu, Hsi-Jen, 2015. "Driver perception uncertainty in perceived relative speed and reaction time in car following – A quantum optical flow perspective," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 257-274.
    18. Liu, Zhaoze & Ge, Hongxia & Cheng, Rongjun, 2018. "KdV–Burgers equation in the modified continuum model considering the effect of friction and radius on a curved road," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1218-1227.
    19. Bouadi, Marouane & Jia, Bin & Jiang, Rui & Li, Xingang & Gao, Zi-You, 2022. "Stochastic factors and string stability of traffic flow: Analytical investigation and numerical study based on car-following models," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 96-122.
    20. Wang, Zihao & Ge, Hongxia & Cheng, Rongjun, 2018. "Nonlinear analysis for a modified continuum model considering driver’s memory and backward looking effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 18-27.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:542:y:2020:i:c:s0378437119318965. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.