IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v419y2015icp183-195.html
   My bibliography  Save this article

Comparing numerical integration schemes for time-continuous car-following models

Author

Listed:
  • Treiber, Martin
  • Kanagaraj, Venkatesan

Abstract

When simulating trajectories by integrating time-continuous car-following models, standard integration schemes such as the fourth-order Runge–Kutta method (RK4) are rarely used while the simple Euler method is popular among researchers. We compare four explicit methods both analytically and numerically: Euler’s method, ballistic update, Heun’s method (trapezoidal rule), and the standard RK4. As performance metrics, we plot the global discretization error as a function of the numerical complexity. We tested the methods on several time-continuous car-following models in several multi-vehicle simulation scenarios with and without discontinuities such as stops or a discontinuous behavior of an external leader. We find that the theoretical advantage of RK4 (consistency order 4) only plays a role if both the acceleration function of the model and the trajectory of the leader are sufficiently often differentiable. Otherwise, we obtain lower (and often fractional) consistency orders. Although, to our knowledge, Heun’s method has never been used for integrating car-following models, it turns out to be the best scheme for many practical situations. The ballistic update always prevails over Euler’s method although both are of first order.

Suggested Citation

  • Treiber, Martin & Kanagaraj, Venkatesan, 2015. "Comparing numerical integration schemes for time-continuous car-following models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 183-195.
  • Handle: RePEc:eee:phsmap:v:419:y:2015:i:c:p:183-195
    DOI: 10.1016/j.physa.2014.09.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114008383
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.09.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Denos C. Gazis & Robert Herman & Richard W. Rothery, 1961. "Nonlinear Follow-the-Leader Models of Traffic Flow," Operations Research, INFORMS, vol. 9(4), pages 545-567, August.
    2. Jordi Casas & Jaime L. Ferrer & David Garcia & Josep Perarnau & Alex Torday, 2010. "Traffic Simulation with Aimsun," International Series in Operations Research & Management Science, in: Jaume Barceló (ed.), Fundamentals of Traffic Simulation, chapter 0, pages 173-232, Springer.
    3. Newell, G. F., 2002. "A simplified car-following theory: a lower order model," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 195-205, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ito, Kotaro & Nishi, Ryosuke, 2023. "Influence of self-disassembly of bridges on collective flow characteristics of swarm robots in a single-lane and periodic system with a gap," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    2. Sun, Jie & Zheng, Zuduo & Sun, Jian, 2018. "Stability analysis methods and their applicability to car-following models in conventional and connected environments," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 212-237.
    3. Nishi, Ryosuke, 2020. "Theoretical conditions for restricting secondary jams in jam-absorption driving scenarios," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    4. Punzo, Vincenzo & Montanino, Marcello, 2016. "Speed or spacing? Cumulative variables, and convolution of model errors and time in traffic flow models validation and calibration," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 21-33.
    5. Li, Xiang & Sun, Jian-Qiao, 2017. "Studies of vehicle lane-changing dynamics and its effect on traffic efficiency, safety and environmental impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 41-58.
    6. Nishi, Ryosuke & Watanabe, Takashi, 2022. "System-size dependence of a jam-absorption driving strategy to remove traffic jam caused by a sag under the presence of traffic instability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    7. Sun, Jie & Zheng, Zuduo & Sun, Jian, 2020. "The relationship between car following string instability and traffic oscillations in finite-sized platoons and its use in easing congestion via connected and automated vehicles with IDM based control," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 58-83.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van Lint, J.W.C. & Calvert, S.C., 2018. "A generic multi-level framework for microscopic traffic simulation—Theory and an example case in modelling driver distraction," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 63-86.
    2. Coifman, Benjamin & Ponnu, Balaji, 2020. "Adjacent lane dependencies modulating wave velocity on congested freeways-An empirical study," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 84-99.
    3. Zhang, H.M. & Kim, T., 2005. "A car-following theory for multiphase vehicular traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 39(5), pages 385-399, June.
    4. Kai Nagel & Peter Wagner & Richard Woesler, 2003. "Still Flowing: Approaches to Traffic Flow and Traffic Jam Modeling," Operations Research, INFORMS, vol. 51(5), pages 681-710, October.
    5. Tian, Junfang & Li, Guangyu & Treiber, Martin & Jiang, Rui & Jia, Ning & Ma, Shoufeng, 2016. "Cellular automaton model simulating spatiotemporal patterns, phase transitions and concave growth pattern of oscillations in traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 560-575.
    6. Ponnu, Balaji & Coifman, Benjamin, 2015. "Speed-spacing dependency on relative speed from the adjacent lane: New insights for car following models," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 74-90.
    7. Tian, Junfang & Zhu, Chenqiang & Chen, Danjue & Jiang, Rui & Wang, Guanying & Gao, Ziyou, 2021. "Car following behavioral stochasticity analysis and modeling: Perspective from wave travel time," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 160-176.
    8. Cheng, Qixiu & Liu, Zhiyuan & Lin, Yuqian & Zhou, Xuesong (Simon), 2021. "An s-shaped three-parameter (S3) traffic stream model with consistent car following relationship," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 246-271.
    9. Faryal Ali & Zawar Hussain Khan & Khurram Shehzad Khattak & Thomas Aaron Gulliver & Akhtar Nawaz Khan, 2022. "A Microscopic Heterogeneous Traffic Flow Model Considering Distance Headway," Mathematics, MDPI, vol. 11(1), pages 1-20, December.
    10. Faryal Ali & Zawar Hussain Khan & Khurram Shehzad Khattak & Thomas Aaron Gulliver & Ahmed B. Altamimi, 2023. "A Microscopic Traffic Model Incorporating Vehicle Vibrations Due to Pavement Condition," Mathematics, MDPI, vol. 11(24), pages 1-24, December.
    11. Li, Xiaopeng & Ouyang, Yanfeng, 2011. "Characterization of traffic oscillation propagation under nonlinear car-following laws," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1346-1361.
    12. Kalathil, Dileep & Kurzhanskiy, Alex A. & Varaiya, Pravin, 2017. "Sustainable Operation of Arterial Networks," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt5js550jt, Institute of Transportation Studies, UC Berkeley.
    13. Coifman, Benjamin, 2015. "Empirical flow-density and speed-spacing relationships: Evidence of vehicle length dependency," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 54-65.
    14. Auwal Alhassan Musa & Salim Idris Malami & Fayez Alanazi & Wassef Ounaies & Mohammed Alshammari & Sadi Ibrahim Haruna, 2023. "Sustainable Traffic Management for Smart Cities Using Internet-of-Things-Oriented Intelligent Transportation Systems (ITS): Challenges and Recommendations," Sustainability, MDPI, vol. 15(13), pages 1-15, June.
    15. Jin, Wen-Long, 2016. "On the equivalence between continuum and car-following models of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 543-559.
    16. Jin, Wen-Long, 2012. "The traffic statics problem in a road network," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1360-1373.
    17. Zhao, Jing & Knoop, Victor L. & Wang, Meng, 2020. "Two-dimensional vehicular movement modelling at intersections based on optimal control," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 1-22.
    18. Zhu, Chenqiang & Zhong, Shiquan & Li, Guangyu & Ma, Shoufeng, 2017. "New control strategy for the lattice hydrodynamic model of traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 445-453.
    19. Nakata, Makoto & Yamauchi, Atsuo & Tanimoto, Jun & Hagishima, Aya, 2010. "Dilemma game structure hidden in traffic flow at a bottleneck due to a 2 into 1 lane junction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(23), pages 5353-5361.
    20. Seo, Toru & Kawasaki, Yutaka & Kusakabe, Takahiko & Asakura, Yasuo, 2019. "Fundamental diagram estimation by using trajectories of probe vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 40-56.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:419:y:2015:i:c:p:183-195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.