IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v523y2019icp191-203.html
   My bibliography  Save this article

Threshold behavior of a stochastic Lotka–Volterra food chain chemostat model with jumps

Author

Listed:
  • Gao, Miaomiao
  • Jiang, Daqing
  • Hayat, Tasawar
  • Alsaedi, Ahmed

Abstract

Taking lévy jumps into account, a Lotka–Volterra food chain chemostat model in random environment is proposed and investigated. We first prove the existence and uniqueness of the global positive solution. Then conditions for extinction of the microorganisms are derived in two cases. Furthermore, we establish sufficient conditions for persistence in the mean of the system. Theoretical analysis indicates that the dynamics of the considered model are determined by two threshold parameters R0s and R1s, and both white noise and lévy noise are disadvantageous to the system. Finally, numerical simulations are given to illustrate the results.

Suggested Citation

  • Gao, Miaomiao & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2019. "Threshold behavior of a stochastic Lotka–Volterra food chain chemostat model with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 191-203.
  • Handle: RePEc:eee:phsmap:v:523:y:2019:i:c:p:191-203
    DOI: 10.1016/j.physa.2019.02.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119301827
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.02.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Fengyan & Pang, Guoping & Zhang, Shuwen, 2009. "Analysis of a Lotka–Volterra food chain chemostat with converting time delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2786-2795.
    2. Meng, Xinzhu & Li, Fei & Gao, Shujing, 2018. "Global analysis and numerical simulations of a novel stochastic eco-epidemiological model with time delay," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 701-726.
    3. Liu, Meng & Bai, Chuanzhi & Deng, Meiling & Du, Bo, 2016. "Analysis of stochastic two-prey one-predator model with Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 176-188.
    4. Zhou, Yanli & Yuan, Sanling & Zhao, Dianli, 2016. "Threshold behavior of a stochastic SIS model with Le´vy jumps," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 255-267.
    5. Ali, Emad & Asif, Mohammed & Ajbar, AbdelHamid, 2013. "Study of chaotic behavior in predator–prey interactions in a chemostat," Ecological Modelling, Elsevier, vol. 259(C), pages 10-15.
    6. Zhou, Yanli & Zhang, Weiguo, 2016. "Threshold of a stochastic SIR epidemic model with Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 446(C), pages 204-216.
    7. Guodong Liu & Xiaohong Wang & Xinzhu Meng & Shujing Gao, 2017. "Extinction and Persistence in Mean of a Novel Delay Impulsive Stochastic Infected Predator-Prey System with Jumps," Complexity, Hindawi, vol. 2017, pages 1-15, June.
    8. Kunita, Hiroshi, 2010. "Itô's stochastic calculus: Its surprising power for applications," Stochastic Processes and their Applications, Elsevier, vol. 120(5), pages 622-652, May.
    9. Wang, Fengyan & Pang, Guoping & Lu, Zhengyi, 2009. "Analysis of a Beddington–DeAngelis food chain chemostat with periodically varying dilution rate," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1609-1615.
    10. Zhang, Xinhong & Li, Wenxue & Liu, Meng & Wang, Ke, 2015. "Dynamics of a stochastic Holling II one-predator two-prey system with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 571-582.
    11. Sun, Shulin & Sun, Yaru & Zhang, Guang & Liu, Xinzhi, 2017. "Dynamical behavior of a stochastic two-species Monod competition chemostat model," Applied Mathematics and Computation, Elsevier, vol. 298(C), pages 153-170.
    12. Zhao, Dianli & Zhang, Tiansi & Yuan, Sanling, 2016. "The threshold of a stochastic SIVS epidemic model with nonlinear saturated incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 372-379.
    13. Zhao, Yanan & Jiang, Daqing & O’Regan, Donal, 2013. "The extinction and persistence of the stochastic SIS epidemic model with vaccination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 4916-4927.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sabbar, Yassine & Kiouach, Driss & Rajasekar, S.P. & El-idrissi, Salim El Azami, 2022. "The influence of quadratic Lévy noise on the dynamic of an SIC contagious illness model: New framework, critical comparison and an application to COVID-19 (SARS-CoV-2) case," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Miaomiao & Jiang, Daqing, 2019. "Analysis of stochastic multimolecular biochemical reaction model with lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 601-613.
    2. Chen, Xingzhi & Xu, Xin & Tian, Baodan & Li, Dong & Yang, Dan, 2022. "Dynamics of a stochastic delayed chemostat model with nutrient storage and Lévy jumps," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    3. Tingting Ma & Xinzhu Meng & Zhengbo Chang, 2019. "Dynamics and Optimal Harvesting Control for a Stochastic One-Predator-Two-Prey Time Delay System with Jumps," Complexity, Hindawi, vol. 2019, pages 1-19, March.
    4. Liu, Chao & Xun, Xinying & Zhang, Guilai & Li, Yuanke, 2020. "Stochastic dynamics and optimal control in a hybrid bioeconomic system with telephone noise and Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    5. Jin, Manli, 2019. "Classification of asymptotic behavior in a stochastic SIS epidemic model with vaccination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 661-666.
    6. Ge, Qing & Ji, Guilin & Xu, Jiabo & Fan, Xiaolin, 2016. "Extinction and persistence of a stochastic nonlinear SIS epidemic model with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1120-1127.
    7. Zhang, Xinhong & Jiang, Daqing & Hayat, Tasawar & Ahmad, Bashir, 2017. "Dynamics of a stochastic SIS model with double epidemic diseases driven by Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 767-777.
    8. Jaouad Danane & Delfim F. M. Torres, 2023. "Three-Species Predator–Prey Stochastic Delayed Model Driven by Lévy Jumps and with Cooperation among Prey Species," Mathematics, MDPI, vol. 11(7), pages 1-22, March.
    9. Qi, Haokun & Zhang, Shengqiang & Meng, Xinzhu & Dong, Huanhe, 2018. "Periodic solution and ergodic stationary distribution of two stochastic SIQS epidemic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 223-241.
    10. Cao, Zhongwei & Shi, Yuee & Wen, Xiangdan & Liu, Liya & Hu, Jingwei, 2020. "Analysis of a hybrid switching SVIR epidemic model with vaccination and Lévy noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    11. Sun, Shulin & Zhang, Xiaofeng, 2018. "Asymptotic behavior of a stochastic delayed chemostat model with nonmonotone uptake function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 38-56.
    12. Bao, Kangbo & Zhang, Qimin & Rong, Libin & Li, Xining, 2019. "Dynamics of an imprecise SIRS model with Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 489-506.
    13. Rifhat, Ramziya & Wang, Lei & Teng, Zhidong, 2017. "Dynamics for a class of stochastic SIS epidemic models with nonlinear incidence and periodic coefficients," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 176-190.
    14. Fan, Kuangang & Zhang, Yan & Gao, Shujing & Chen, Shihua, 2020. "A delayed vaccinated epidemic model with nonlinear incidence rate and Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
    15. Liu, Chao & Xun, Xinying & Zhang, Qingling & Li, Yuanke, 2019. "Dynamical analysis and optimal control in a hybrid stochastic double delayed bioeconomic system with impulsive contaminants emission and Lévy jumps," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 99-118.
    16. Wu, Jian, 2018. "Stability of a three-species stochastic delay predator–prey system with Lévy noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 492-505.
    17. Liu, Chao & Wang, Luping & Zhang, Qingling & Li, Yuanke, 2018. "Modeling and dynamical analysis of a triple delayed prey–predator–scavenger system with Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1216-1239.
    18. Xu, Xin & Tian, Baodan & Chen, Xingzhi & Qiu, Yanhong, 2024. "Dynamics of a stochastic food chain chemostat model with Monod–Haldane functional response and Ornstein–Uhlenbeck process," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 495-512.
    19. Wu, Jian, 2020. "Dynamics of a two-predator one-prey stochastic delay model with Lévy noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    20. Wei, Fengying & Chen, Lihong, 2020. "Extinction and stationary distribution of an epidemic model with partial vaccination and nonlinear incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:523:y:2019:i:c:p:191-203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.