IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v512y2018icp38-56.html
   My bibliography  Save this article

Asymptotic behavior of a stochastic delayed chemostat model with nonmonotone uptake function

Author

Listed:
  • Sun, Shulin
  • Zhang, Xiaofeng

Abstract

In this paper, a stochastic delay differential equations chemostat model with nonmonotone uptake function is considered, and the nutrient conversion process involves time delay. First, we verify that there is a unique global positive solution of the stochastic system. Second, we find that the solutions of stochastic system will oscillate around the equilibria of the corresponding deterministic model, moreover, results show that time delay has critical effects on the extinction and persistence of the microorganism, that is to say, under small noise, when the time delay is small, microorganism is persistent; when the time delay is large, microorganism will be extinct. In addition, we can find by the computer simulation that large noise may lead to microorganism become extinct, although microorganism is persistent in the deterministic systems when the time delay is small. Finally, computer simulations are carried out to illustrate the obtained results and the existence of bistability is observed.

Suggested Citation

  • Sun, Shulin & Zhang, Xiaofeng, 2018. "Asymptotic behavior of a stochastic delayed chemostat model with nonmonotone uptake function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 38-56.
  • Handle: RePEc:eee:phsmap:v:512:y:2018:i:c:p:38-56
    DOI: 10.1016/j.physa.2018.08.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118309506
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.08.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Shulin & Zhang, Xiaolu, 2018. "A stochastic chemostat model with an inhibitor and noise independent of population sizes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 1763-1781.
    2. Liu, Qun & Jiang, Daqing & Shi, Ningzhong & Hayat, Tasawar & Alsaedi, Ahmed, 2016. "Asymptotic behavior of a stochastic delayed SEIR epidemic model with nonlinear incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 870-882.
    3. Campillo, F. & Joannides, M. & Larramendy-Valverde, I., 2011. "Stochastic modeling of the chemostat," Ecological Modelling, Elsevier, vol. 222(15), pages 2676-2689.
    4. Guodong Liu & Xiaohong Wang & Xinzhu Meng & Shujing Gao, 2017. "Extinction and Persistence in Mean of a Novel Delay Impulsive Stochastic Infected Predator-Prey System with Jumps," Complexity, Hindawi, vol. 2017, pages 1-15, June.
    5. Liu, Qun & Jiang, Daqing, 2016. "The threshold of a stochastic delayed SIR epidemic model with vaccination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 140-147.
    6. Liu, Qun & Chen, Qingmei, 2016. "Dynamics of a stochastic SIR epidemic model with saturated incidence," Applied Mathematics and Computation, Elsevier, vol. 282(C), pages 155-166.
    7. Liu, Qun & Chen, Qingmei & Jiang, Daqing, 2016. "The threshold of a stochastic delayed SIR epidemic model with temporary immunity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 115-125.
    8. Sun, Shulin & Sun, Yaru & Zhang, Guang & Liu, Xinzhi, 2017. "Dynamical behavior of a stochastic two-species Monod competition chemostat model," Applied Mathematics and Computation, Elsevier, vol. 298(C), pages 153-170.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Xingzhi & Xu, Xin & Tian, Baodan & Li, Dong & Yang, Dan, 2022. "Dynamics of a stochastic delayed chemostat model with nutrient storage and Lévy jumps," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    2. Mu, Yu & Li, Zuxiong, 2023. "Bifurcation dynamics of a delayed chemostat system with spatial diffusion," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 186-204.
    3. Zhang, Xiaofeng, 2023. "Ultimate boundedness of a stochastic chemostat model with periodic nutrient input and discrete delay," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    4. Yan, Rong & Sun, Shulin, 2020. "Stochastic characteristics of a chemostat model with variable yield," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    5. Zhang, Xiaofeng & Yuan, Rong, 2021. "Forward attractor for stochastic chemostat model with multiplicative noise," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    6. He, Lingyun & Banihashemi, Seddigheh & Jafari, Hossein & Babaei, Afshin, 2021. "Numerical treatment of a fractional order system of nonlinear stochastic delay differential equations using a computational scheme," Chaos, Solitons & Fractals, Elsevier, vol. 149(C).
    7. Nguyen, Dang H. & Nguyen, Nhu N. & Yin, George, 2021. "Stochastic functional Kolmogorov equations, I: Persistence," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 319-364.
    8. Zhang, Xiaofeng & Yuan, Rong, 2021. "A stochastic chemostat model with mean-reverting Ornstein-Uhlenbeck process and Monod-Haldane response function," Applied Mathematics and Computation, Elsevier, vol. 394(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hattaf, Khalid & Mahrouf, Marouane & Adnani, Jihad & Yousfi, Noura, 2018. "Qualitative analysis of a stochastic epidemic model with specific functional response and temporary immunity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 591-600.
    2. Cao, Zhongwei & Shi, Yuee & Wen, Xiangdan & Liu, Liya & Hu, Jingwei, 2020. "Analysis of a hybrid switching SVIR epidemic model with vaccination and Lévy noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    3. Zhang, Xiaofeng & Yuan, Rong, 2021. "Forward attractor for stochastic chemostat model with multiplicative noise," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    4. Wen, Buyu & Teng, Zhidong & Li, Zhiming, 2018. "The threshold of a periodic stochastic SIVS epidemic model with nonlinear incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 532-549.
    5. Li, Yan & Ye, Ming & Zhang, Qimin, 2019. "Strong convergence of the partially truncated Euler–Maruyama scheme for a stochastic age-structured SIR epidemic model," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    6. Zhang, Xiaofeng & Yuan, Rong, 2021. "A stochastic chemostat model with mean-reverting Ornstein-Uhlenbeck process and Monod-Haldane response function," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    7. Sharma, Natasha & Gupta, Arvind Kumar, 2017. "Impact of time delay on the dynamics of SEIR epidemic model using cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 114-125.
    8. Verma, Tina & Gupta, Arvind Kumar, 2020. "Mean-field dispersal induced synchrony and stability in an epidemic model under patchy environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    9. Xin, Ming-Zhen & Wang, Bin-Guo, 2020. "Stationary distribution and extinction of a stochastic tuberculosis model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    10. Yan, Rong & Sun, Shulin, 2020. "Stochastic characteristics of a chemostat model with variable yield," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    11. Jia, Fangju & Lv, Guangying, 2018. "Dynamic analysis of a stochastic rumor propagation model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 613-623.
    12. Nguyen, Dang H. & Nguyen, Nhu N. & Yin, George, 2021. "Stochastic functional Kolmogorov equations, I: Persistence," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 319-364.
    13. Jia, Pingqi & Wang, Chao & Zhang, Gaoyu & Ma, Jianfeng, 2019. "A rumor spreading model based on two propagation channels in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 342-353.
    14. Wanduku, Divine, 2017. "Complete global analysis of a two-scale network SIRS epidemic dynamic model with distributed delay and random perturbations," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 49-76.
    15. Liu, Yue, 2022. "Extinction, persistence and density function analysis of a stochastic two-strain disease model with drug resistance mutation," Applied Mathematics and Computation, Elsevier, vol. 433(C).
    16. Fan, Kuangang & Zhang, Yan & Gao, Shujing & Wei, Xiang, 2017. "A class of stochastic delayed SIR epidemic models with generalized nonlinear incidence rate and temporary immunity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 198-208.
    17. Qi, Haokun & Zhang, Shengqiang & Meng, Xinzhu & Dong, Huanhe, 2018. "Periodic solution and ergodic stationary distribution of two stochastic SIQS epidemic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 223-241.
    18. Zhang, Xiao-Bing & Huo, Hai-Feng & Xiang, Hong & Shi, Qihong & Li, Dungang, 2017. "The threshold of a stochastic SIQS epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 362-374.
    19. Chang, Zhengbo & Meng, Xinzhu & Lu, Xiao, 2017. "Analysis of a novel stochastic SIRS epidemic model with two different saturated incidence rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 472(C), pages 103-116.
    20. Cai, Yongli & Kang, Yun & Wang, Weiming, 2017. "A stochastic SIRS epidemic model with nonlinear incidence rate," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 221-240.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:512:y:2018:i:c:p:38-56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.