IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v499y2018icp233-240.html
   My bibliography  Save this article

Time series analysis of the Antarctic Circumpolar Wave via symbolic transfer entropy

Author

Listed:
  • Oh, Mingi
  • Kim, Sehyun
  • Lim, Kyuseong
  • Kim, Soo Yong

Abstract

An attempt to interpret a large-scale climate phenomenon in the Southern Ocean (SO), the Antarctic Circumpolar Wave (ACW), has been made using an information entropy method, symbolic transfer entropy (STE). Over the areas of 50–60∘S latitude belt, information flow for four climate variables, sea surface temperature (SST), sea–ice edge (SIE), sea level pressure (SLP) and meridional wind speed (MWS) is examined. We found a tendency that eastward flow of information is preferred only for oceanic variables, which is a main characteristic of the ACW, an eastward wave making a circuit around the Antarctica. Since the ACW is the coherent pattern in both ocean and atmosphere it is reasonable to infer that the tendency reflects the Antarctic Circumpolar Current (ACC) encircling the Antarctica, rather than an evidence of the ACW. We observed one common feature for all four variables, a strong information flow over the area of the eastern Pacific Ocean, which suggest a signature of El Nino Southern Oscillation (ENSO).

Suggested Citation

  • Oh, Mingi & Kim, Sehyun & Lim, Kyuseong & Kim, Soo Yong, 2018. "Time series analysis of the Antarctic Circumpolar Wave via symbolic transfer entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 233-240.
  • Handle: RePEc:eee:phsmap:v:499:y:2018:i:c:p:233-240
    DOI: 10.1016/j.physa.2017.12.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117312657
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.12.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    2. Kwon, Okyu & Yang, Jae-Suk, 2008. "Information flow between composite stock index and individual stocks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2851-2856.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dimpfl, Thomas & Peter, Franziska J., 2019. "Group transfer entropy with an application to cryptocurrencies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 543-551.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lavička, Hynek & Kracík, Jiří, 2020. "Fluctuation analysis of electric power loads in Europe: Correlation multifractality vs. Distribution function multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    2. Kakinaka, Shinji & Umeno, Ken, 2021. "Exploring asymmetric multifractal cross-correlations of price–volatility and asymmetric volatility dynamics in cryptocurrency markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    3. Longfeng Zhao & Wei Li & Andrea Fenu & Boris Podobnik & Yougui Wang & H. Eugene Stanley, 2017. "The q-dependent detrended cross-correlation analysis of stock market," Papers 1705.01406, arXiv.org, revised Jun 2017.
    4. Vitanov, Nikolay K. & Sakai, Kenshi & Dimitrova, Zlatinka I., 2008. "SSA, PCA, TDPSC, ACFA: Useful combination of methods for analysis of short and nonstationary time series," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 187-202.
    5. Dimpfl, Thomas & Peter, Franziska J., 2014. "The impact of the financial crisis on transatlantic information flows: An intraday analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 31(C), pages 1-13.
    6. Peng Yue & Qing Cai & Wanfeng Yan & Wei-Xing Zhou, 2020. "Information flow networks of Chinese stock market sectors," Papers 2004.08759, arXiv.org.
    7. El Alaoui, Marwane & Benbachir, Saâd, 2013. "Multifractal detrended cross-correlation analysis in the MENA area," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5985-5993.
    8. Méndez-Gordillo, Alma Rosa & Cadenas, Erasmo, 2021. "Wind speed forecasting by the extraction of the multifractal patterns of time series through the multiplicative cascade technique," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    9. Nagarajan, Radhakrishnan & Kavasseri, Rajesh G., 2005. "Minimizing the effect of periodic and quasi-periodic trends in detrended fluctuation analysis," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 777-784.
    10. Diniz-Maganini, Natalia & Diniz, Eduardo H. & Rasheed, Abdul A., 2021. "Bitcoin’s price efficiency and safe haven properties during the COVID-19 pandemic: A comparison," Research in International Business and Finance, Elsevier, vol. 58(C).
    11. Mei, Dexiang & Liu, Jing & Ma, Feng & Chen, Wang, 2017. "Forecasting stock market volatility: Do realized skewness and kurtosis help?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 153-159.
    12. Zhang, Jiao & Li, Youping & Liu, Chunqiong & Wu, Bo & Shi, Kai, 2022. "A study of cross-correlations between PM2.5 and O3 based on Copula and Multifractal methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    13. Alvarez-Ramirez, Jose & Alvarez, Jesus & Rodriguez, Eduardo, 2008. "Short-term predictability of crude oil markets: A detrended fluctuation analysis approach," Energy Economics, Elsevier, vol. 30(5), pages 2645-2656, September.
    14. Yun-Jung Lee & Neung-Woo Kim & Ki-Hong Choi & Seong-Min Yoon, 2020. "Analysis of the Informational Efficiency of the EU Carbon Emission Trading Market: Asymmetric MF-DFA Approach," Energies, MDPI, vol. 13(9), pages 1-14, May.
    15. Li, Xing, 2021. "On the multifractal analysis of air quality index time series before and during COVID-19 partial lockdown: A case study of Shanghai, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    16. Stosic, Tatijana & Telesca, Luciano & Stosic, Borko, 2021. "Multiparametric statistical and dynamical analysis of angular high-frequency wind speed time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    17. Wang, Guochao & Zheng, Shenzhou & Wang, Jun, 2019. "Complex and composite entropy fluctuation behaviors of statistical physics interacting financial model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 97-113.
    18. Juraj Čurpek, 2019. "Time Evolution of Hurst Exponent: Czech Wholesale Electricity Market Study," European Financial and Accounting Journal, Prague University of Economics and Business, vol. 2019(3), pages 25-44.
    19. Zheng, Zeyu & Xiao, Rui & Shi, Haibo & Li, Guihong & Zhou, Xiaofeng, 2015. "Statistical regularities of Carbon emission trading market: Evidence from European Union allowances," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 426(C), pages 9-15.
    20. Guan, Sihai & Wan, Dongyu & Yang, Yanmiao & Biswal, Bharat, 2022. "Sources of multifractality of the brain rs-fMRI signal," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:499:y:2018:i:c:p:233-240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.