IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v403y2014icp155-164.html
   My bibliography  Save this article

A coupled lattice Boltzmann model for simulating reactive transport in CO2 injection

Author

Listed:
  • Tian, Zhiwei
  • Xing, Huilin
  • Tan, Yunliang
  • Gao, Jinfang

Abstract

A lattice Boltzmann method (LBM) based computational REV model of geochemical reaction is proposed to describe the geochemical reactions of both solute ions transport and solid phase CaCO3 dissolution in CO2-saturated water as well as their effects on the velocity fields of fluid flows during a CO2 injection process. This includes the porosity change with the calcium carbonate dissolution and its feedback impacts on fluid flows. The proposed model is implemented in our in-house LBM code and verified through a hypothetic numerical experiment. The interaction between chemical reactions and fluid advection–diffusion processes is investigated through comparing simulation results of different species distribution at different stages. It has been well known that even a small porosity change induced by the chemical reaction would cause an obvious permeability change. Our present results validate that rule, and furthermore yield a numerical relationship between porosity change and fluid velocity increase at different time steps. This demonstrates that the proposed LBM geochemical reaction model may serve as a reliable approach to investigate the reactive transport in reservoirs of CO2 injection.

Suggested Citation

  • Tian, Zhiwei & Xing, Huilin & Tan, Yunliang & Gao, Jinfang, 2014. "A coupled lattice Boltzmann model for simulating reactive transport in CO2 injection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 155-164.
  • Handle: RePEc:eee:phsmap:v:403:y:2014:i:c:p:155-164
    DOI: 10.1016/j.physa.2014.02.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114001496
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.02.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tian, Zhi-Wei & Zou, Chun & Liu, Hong-Juan & Guo, Zhao-Li & Liu, Zhao-Hui & Zheng, Chu-Guang, 2007. "Lattice Boltzmann scheme for simulating thermal micro-flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(1), pages 59-68.
    2. Zhi-Wei Tian & Sheng Chen & Chu-Guang Zheng, 2010. "Lattice Boltzmann Simulation Of Gaseous Finite-Knudsen Microflows," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 21(06), pages 769-783.
    3. Chen, Sheng & Tian, Zhiwei, 2009. "Simulation of microchannel flow using the lattice Boltzmann method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(23), pages 4803-4810.
    4. Zhiwei Tian & Yunliang Tan & Sheng Chen, 2012. "A Numerical Study On Premixed Microcombustion By Lattice Boltzmann Method," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 23(05), pages 1-13.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yidi Wan & Chengzao Jia & Wen Zhao & Lin Jiang & Zhuxin Chen, 2023. "Micro-Scale Lattice Boltzmann Simulation of Two-Phase CO 2 –Brine Flow in a Tighter REV Extracted from a Permeable Sandstone Core: Implications for CO 2 Storage Efficiency," Energies, MDPI, vol. 16(3), pages 1-26, February.
    2. Zhigao Peng & Shenggui Liu & Yingjun Li & Zongwei Deng & Haoxiong Feng, 2020. "Pore-Scale Lattice Boltzmann Simulation of Gas Diffusion–Adsorption Kinetics Considering Adsorption-Induced Diffusivity Change," Energies, MDPI, vol. 13(18), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan, Yudong & Rahman, Sheik, 2016. "Extended application of lattice Boltzmann method to rarefied gas flow in micro-channels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 25-36.
    2. Karimipour, Arash & Hemmat Esfe, Mohammad & Safaei, Mohammad Reza & Toghraie Semiromi, Davood & Jafari, Saeed & Kazi, S.N., 2014. "Mixed convection of copper–water nanofluid in a shallow inclined lid driven cavity using the lattice Boltzmann method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 150-168.
    3. Yang, Xu & Zhou, Wenning & Liu, Xunliang & Yan, Yuying, 2020. "A multiscale approach for simulation of shale gas transport in organic nanopores," Energy, Elsevier, vol. 210(C).
    4. Che Sidik, Nor Azwadi & Aisyah Razali, Siti, 2014. "Lattice Boltzmann method for convective heat transfer of nanofluids – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 864-875.
    5. Chen, Sheng & Du, Rui, 2011. "Entropy generation of turbulent double-diffusive natural convection in a rectangle cavity," Energy, Elsevier, vol. 36(3), pages 1721-1734.
    6. Chen, Sheng & Tian, Zhiwei, 2009. "Simulation of microchannel flow using the lattice Boltzmann method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(23), pages 4803-4810.
    7. Goodarzi, Marjan & D’Orazio, Annunziata & Keshavarzi, Ahmad & Mousavi, Sayedali & Karimipour, Arash, 2018. "Develop the nano scale method of lattice Boltzmann to predict the fluid flow and heat transfer of air in the inclined lid driven cavity with a large heat source inside, Two case studies: Pure natural ," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 210-233.
    8. Esfahani, Javad Abolfazli & Norouzi, Ali, 2014. "Two relaxation time lattice Boltzmann model for rarefied gas flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 51-61.
    9. Wang, Hui & Chen, Li & Qu, Zhiguo & Yin, Ying & Kang, Qinjun & Yu, Bo & Tao, Wen-Quan, 2020. "Modeling of multi-scale transport phenomena in shale gas production — A critical review," Applied Energy, Elsevier, vol. 262(C).
    10. Wang, Lingquan & Zeng, Zhong & Zhang, Liangqi & Qiao, Long & Zhang, Yi & Lu, Yiyu, 2018. "A new boundary scheme for simulation of gas flow in kerogen pores with considering surface diffusion effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 180-190.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:403:y:2014:i:c:p:155-164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.