IDEAS home Printed from https://ideas.repec.org/a/wsi/ijmpcx/v21y2010i06ns0129183110015464.html
   My bibliography  Save this article

Lattice Boltzmann Simulation Of Gaseous Finite-Knudsen Microflows

Author

Listed:
  • ZHI-WEI TIAN

    (Faculty of Earth Resources, China University of Geosciences, Wuhan 430074, China)

  • SHENG CHEN

    (State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China)

  • CHU-GUANG ZHENG

    (State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract

In this study, microscale gaseous flows in the transitional regime have been investigated by lattice Boltzmann method (LBM). In the existing microflows LBM models, the Knudsen layer correction function has been introduced into the models. According to the kinetic theory rigorously, we choose a proper expression of correction function, and then determine its adjustable parameter. A substitute high-order boundary conditions treatment is adopted to capture the velocity slip, without any difficulties in computing the high-order velocity derivatives. The numerical results of two typical microflows show that: the present results agree with the analytical solutions better than the existing LBM simulations. Evident improvements can also be found, especially for finite Kn microflows.

Suggested Citation

  • Zhi-Wei Tian & Sheng Chen & Chu-Guang Zheng, 2010. "Lattice Boltzmann Simulation Of Gaseous Finite-Knudsen Microflows," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 21(06), pages 769-783.
  • Handle: RePEc:wsi:ijmpcx:v:21:y:2010:i:06:n:s0129183110015464
    DOI: 10.1142/S0129183110015464
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0129183110015464
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0129183110015464?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Goodarzi, Marjan & D’Orazio, Annunziata & Keshavarzi, Ahmad & Mousavi, Sayedali & Karimipour, Arash, 2018. "Develop the nano scale method of lattice Boltzmann to predict the fluid flow and heat transfer of air in the inclined lid driven cavity with a large heat source inside, Two case studies: Pure natural ," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 210-233.
    2. Yuan, Yudong & Rahman, Sheik, 2016. "Extended application of lattice Boltzmann method to rarefied gas flow in micro-channels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 25-36.
    3. Tian, Zhiwei & Xing, Huilin & Tan, Yunliang & Gao, Jinfang, 2014. "A coupled lattice Boltzmann model for simulating reactive transport in CO2 injection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 155-164.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijmpcx:v:21:y:2010:i:06:n:s0129183110015464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijmpc/ijmpc.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.