IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v392y2013i3p529-537.html
   My bibliography  Save this article

Detecting local community structures in complex networks based on local degree central nodes

Author

Listed:
  • Chen, Qiong
  • Wu, Ting-Ting
  • Fang, Ming

Abstract

Detecting local communities in real-world graphs such as large social networks, web graphs, and biological networks has received a great deal of attention because obtaining complete information from a large network is still difficult and unrealistic nowadays. In this paper, we define the term local degree central node whose degree is greater than or equal to the degree of its neighbor nodes. A new method based on the local degree central node to detect the local community is proposed. In our method, the local community is not discovered from the given starting node, but from the local degree central node that is associated with the given starting node. Experiments show that the local central nodes are key nodes of communities in complex networks and the local communities detected by our method have high accuracy. Our algorithm can discover local communities accurately for more nodes and is an effective method to explore community structures of large networks.

Suggested Citation

  • Chen, Qiong & Wu, Ting-Ting & Fang, Ming, 2013. "Detecting local community structures in complex networks based on local degree central nodes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(3), pages 529-537.
  • Handle: RePEc:eee:phsmap:v:392:y:2013:i:3:p:529-537
    DOI: 10.1016/j.physa.2012.09.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437112008461
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2012.09.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gergely Palla & Imre Derényi & Illés Farkas & Tamás Vicsek, 2005. "Uncovering the overlapping community structure of complex networks in nature and society," Nature, Nature, vol. 435(7043), pages 814-818, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanmei Hu & Bo Yang & Bin Duo & Xing Zhu, 2022. "Exhaustive Exploitation of Local Seeding Algorithms for Community Detection in a Unified Manner," Mathematics, MDPI, vol. 10(15), pages 1-30, August.
    2. Liu, Saisai & Xia, Zhengyou, 2020. "A two-stage BFS local community detection algorithm based on node transfer similarity and Local Clustering Coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    3. Na Zhang & Yu Yang & Yujie Zheng & Jiafu Su, 2019. "Module partition of complex mechanical products based on weighted complex networks," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1973-1998, April.
    4. Du, Ruijin & Zhang, Nidan & Zhang, Mengxi & Kong, Ziyang & Jia, Qiang & Dong, Gaogao & Tian, Lixin & Ahsan, Muhammad, 2024. "Identifying the optimal node group of carbon emission efficiency correlation network in China based on pinning control theory," Applied Energy, Elsevier, vol. 368(C).
    5. Shang, Ronghua & Zhang, Weitong & Zhang, Jingwen & Feng, Jie & Jiao, Licheng, 2022. "Local community detection based on higher-order structure and edge information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    6. Zhu, Junfang & Ren, Xuezao & Ma, Peijie & Gao, Kun & Wang, Bing-Hong & Zhou, Tao, 2022. "Detecting network communities via greedy expanding based on local superiority index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    7. Dongming Chen & Mingshuo Nie & Jiarui Yan & Dongqi Wang & Qianqian Gan, 2022. "Network Representation Learning Algorithm Based on Complete Subgraph Folding," Mathematics, MDPI, vol. 10(4), pages 1-13, February.
    8. Shang, Ronghua & Luo, Shuang & Li, Yangyang & Jiao, Licheng & Stolkin, Rustam, 2015. "Large-scale community detection based on node membership grade and sub-communities integration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 279-294.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eustace, Justine & Wang, Xingyuan & Cui, Yaozu, 2015. "Community detection using local neighborhood in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 665-677.
    2. Xiao‐Bing Hu & Hang Li & XiaoMei Guo & Pieter H. A. J. M. van Gelder & Peijun Shi, 2019. "Spatial Vulnerability of Network Systems under Spatially Local Hazards," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 162-179, January.
    3. Jorge Peña & Yannick Rochat, 2012. "Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    4. Pirvu Daniela & Barbuceanu Mircea, 2016. "Recent Contributions Of The Statistical Physics In The Research Of Banking, Stock Exchange And Foreign Exchange Markets," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 2, pages 85-92, April.
    5. Daniel M. Ringel & Bernd Skiera, 2016. "Visualizing Asymmetric Competition Among More Than 1,000 Products Using Big Search Data," Marketing Science, INFORMS, vol. 35(3), pages 511-534, May.
    6. Yu, Shuo & Alqahtani, Fayez & Tolba, Amr & Lee, Ivan & Jia, Tao & Xia, Feng, 2022. "Collaborative Team Recognition: A Core Plus Extension Structure," Journal of Informetrics, Elsevier, vol. 16(4).
    7. Shang, Jiaxing & Liu, Lianchen & Li, Xin & Xie, Feng & Wu, Cheng, 2016. "Targeted revision: A learning-based approach for incremental community detection in dynamic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 70-85.
    8. Roth, Camille, 2007. "Empiricism for descriptive social network models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(1), pages 53-58.
    9. Ying Song & Zhiwen Zheng & Yunmei Shi & Bo Wang, 2023. "GLOD: The Local Greedy Expansion Method for Overlapping Community Detection in Dynamic Provenance Networks," Mathematics, MDPI, vol. 11(15), pages 1-16, July.
    10. Shiau, Wen-Lung & Dwivedi, Yogesh K. & Yang, Han Suan, 2017. "Co-citation and cluster analyses of extant literature on social networks," International Journal of Information Management, Elsevier, vol. 37(5), pages 390-399.
    11. Zhang, Zhiwei & Wang, Zhenyu, 2015. "Mining overlapping and hierarchical communities in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 25-33.
    12. J. Sylvan Katz & Guillermo Armando Ronda-Pupo, 2019. "Cooperation, scale-invariance and complex innovation systems: a generalization," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 1045-1065, November.
    13. Masa Tsuchiya & Vincent Piras & Alessandro Giuliani & Masaru Tomita & Kumar Selvarajoo, 2010. "Collective Dynamics of Specific Gene Ensembles Crucial for Neutrophil Differentiation: The Existence of Genome Vehicles Revealed," PLOS ONE, Public Library of Science, vol. 5(8), pages 1-10, August.
    14. Wu, Zhihao & Lin, Youfang & Wan, Huaiyu & Tian, Shengfeng & Hu, Keyun, 2012. "Efficient overlapping community detection in huge real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2475-2490.
    15. Atieh Mirshahvalad & Johan Lindholm & Mattias Derlén & Martin Rosvall, 2012. "Significant Communities in Large Sparse Networks," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-7, March.
    16. Nie, Yanyi & Li, Wenyao & Pan, Liming & Lin, Tao & Wang, Wei, 2022. "Markovian approach to tackle competing pathogens in simplicial complex," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    17. Cerqueti, Roy & Ciciretti, Rocco & Dalò, Ambrogio & Nicolosi, Marco, 2022. "A new measure of the resilience for networks of funds with applications to socially responsible investments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    18. Rizman Žalik, Krista & Žalik, Borut, 2014. "A local multiresolution algorithm for detecting communities of unbalanced structures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 380-393.
    19. Shi, Xiaolin & Adamic, Lada A. & Strauss, Martin J., 2007. "Networks of strong ties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(1), pages 33-47.
    20. Zhang, Shihua & Wang, Rui-Sheng & Zhang, Xiang-Sun, 2007. "Identification of overlapping community structure in complex networks using fuzzy c-means clustering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(1), pages 483-490.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:3:p:529-537. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.