IDEAS home Printed from
   My bibliography  Save this article

Communities, knowledge creation, and information diffusion


  • Lambiotte, R.
  • Panzarasa, P.


In this paper, we examine how patterns of scientific collaboration contribute to knowledge creation and diffusion. Recent studies have shown that scientists can benefit from their position within collaborative networks by being able to receive more information of better quality in a timely fashion, and by presiding over communication between collaborators. Here we focus on the tendency of scientists to cluster into tightly knit communities, and discuss the implications of this tendency for scientific production. We begin by reviewing a new method for finding communities, and we then assess its benefits in terms of computation time and accuracy. While communities often serve as a taxonomic scheme to map knowledge domains, they also affect the way scientists engage in the creation of new knowledge. By drawing on the longstanding debate on the relative benefits of social cohesion and brokerage, we discuss the conditions that facilitate collaborations among scientists within or across communities. We show that highly cited scientific production occurs within communities, when scientists have cohesive collaborations with others from the same knowledge domain, and across communities, when scientists intermediate among otherwise disconnected collaborators from different knowledge domains. We also discuss the implications of communities for information diffusion, and show how traditional epidemiological approaches need to be refined to take knowledge heterogeneity into account and preserve the system’s ability to promote creative processes of novel recombinations of ideas.

Suggested Citation

  • Lambiotte, R. & Panzarasa, P., 2009. "Communities, knowledge creation, and information diffusion," Journal of Informetrics, Elsevier, vol. 3(3), pages 180-190.
  • Handle: RePEc:eee:infome:v:3:y:2009:i:3:p:180-190
    DOI: 10.1016/j.joi.2009.03.007

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL:
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. David N. Laband & Robert D. Tollison, 2000. "Intellectual Collaboration," Journal of Political Economy, University of Chicago Press, vol. 108(3), pages 632-661, June.
    2. Centola, Damon & Eguíluz, Víctor M. & Macy, Michael W., 2007. "Cascade dynamics of complex propagation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(1), pages 449-456.
    3. Bettencourt, Luís M.A. & Kaiser, David I. & Kaur, Jasleen, 2009. "Scientific discovery and topological transitions in collaboration networks," Journal of Informetrics, Elsevier, vol. 3(3), pages 210-221.
    4. Chen, Chaomei & Chen, Yue & Horowitz, Mark & Hou, Haiyan & Liu, Zeyuan & Pellegrino, Donald, 2009. "Towards an explanatory and computational theory of scientific discovery," Journal of Informetrics, Elsevier, vol. 3(3), pages 191-209.
    5. Bettencourt, Luís M.A. & Cintrón-Arias, Ariel & Kaiser, David I. & Castillo-Chávez, Carlos, 2006. "The power of a good idea: Quantitative modeling of the spread of ideas from epidemiological models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 364(C), pages 513-536.
    6. Chen, P. & Xie, H. & Maslov, S. & Redner, S., 2007. "Finding scientific gems with Google’s PageRank algorithm," Journal of Informetrics, Elsevier, vol. 1(1), pages 8-15.
    7. Hu, Ke & Tang, Yi, 2007. "Temporal behaviors of epidemic spreading on the scale-free network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 373(C), pages 845-850.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacob Wood & Gohar Feroz Khan, 2015. "International trade negotiation analysis: network and semantic knowledge infrastructure," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(1), pages 537-556, October.
    2. Krzysztof Klincewicz, 2016. "The emergent dynamics of a technological research topic: the case of graphene," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(1), pages 319-345, January.
    3. Francisco Díez-Martín & Alicia Blanco-González & Camilo Prado-Román, 2021. "The intellectual structure of organizational legitimacy research: a co-citation analysis in business journals," Review of Managerial Science, Springer, vol. 15(4), pages 1007-1043, May.
    4. Rogier Langhe, 2017. "Towards the discovery of scientific revolutions in scientometric data," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(1), pages 505-519, January.
    5. Min, Chao & Bu, Yi & Sun, Jianjun, 2021. "Predicting scientific breakthroughs based on knowledge structure variations," Technological Forecasting and Social Change, Elsevier, vol. 164(C).
    6. Rousseau, Ronald & Hu, Xiaojun, 2013. "Two time series, their meaning and some applications," Journal of Informetrics, Elsevier, vol. 7(3), pages 603-610.
    7. M. Laura Frigotto & Massimo Riccaboni, 2011. "A few special cases: scientific creativity and network dynamics in the field of rare diseases," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 397-420, October.
    8. Jean M Carlson & David L Alderson & Sean P Stromberg & Danielle S Bassett & Emily M Craparo & Francisco Guiterrez-Villarreal & Thomas Otani, 2014. "Measuring and Modeling Behavioral Decision Dynamics in Collective Evacuation," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-17, February.
    9. Simone Turchetti & Roberto Lalli, 2020. "Envisioning a “science diplomacy 2.0”: on data, global challenges, and multi-layered networks," Palgrave Communications, Palgrave Macmillan, vol. 7(1), pages 1-9, December.
    10. Small, Henry & Boyack, Kevin W. & Klavans, Richard, 2014. "Identifying emerging topics in science and technology," Research Policy, Elsevier, vol. 43(8), pages 1450-1467.
    11. Winnink, J.J. & Tijssen, Robert J.W. & van Raan, A.F.J., 2019. "Searching for new breakthroughs in science: How effective are computerised detection algorithms?," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 673-686.
    12. Stephen Carley & Alan L. Porter, 2012. "A forward diversity index," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(2), pages 407-427, February.
    13. Marian-Gabriel Hâncean & Matjaž Perc & Lazăr Vlăsceanu, 2014. "Fragmented Romanian Sociology: Growth and Structure of the Collaboration Network," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-9, November.
    14. Katharina Rath & Klaus Wohlrabe, 2016. "Recent trends in co-authorship in economics: evidence from RePEc," Applied Economics Letters, Taylor & Francis Journals, vol. 23(12), pages 897-902, August.
    15. De Martino, Giuseppe & Spina, Serena, 2015. "Exploiting the time-dynamics of news diffusion on the Internet through a generalized Susceptible–Infected model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 634-644.
    16. Gao, Qiang & Liang, Zhentao & Wang, Ping & Hou, Jingrui & Chen, Xiuxiu & Liu, Manman, 2021. "Potential index: Revealing the future impact of research topics based on current knowledge networks," Journal of Informetrics, Elsevier, vol. 15(3).
    17. Medoff, Marshall H., 2003. "Collaboration and the quality of economics research," Labour Economics, Elsevier, vol. 10(5), pages 597-608, October.
    18. Waltman, Ludo, 2012. "An empirical analysis of the use of alphabetical authorship in scientific publishing," Journal of Informetrics, Elsevier, vol. 6(4), pages 700-711.
    19. Citron, Daniel T. & Way, Samuel F., 2018. "Network assembly of scientific communities of varying size and specificity," Journal of Informetrics, Elsevier, vol. 12(1), pages 181-190.
    20. Su, Cheng & Pan, YunTao & Zhen, YanNing & Ma, Zheng & Yuan, JunPeng & Guo, Hong & Yu, ZhengLu & Ma, CaiFeng & Wu, YiShan, 2011. "PrestigeRank: A new evaluation method for papers and journals," Journal of Informetrics, Elsevier, vol. 5(1), pages 1-13.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:3:y:2009:i:3:p:180-190. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.