IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v392y2013i15p3177-3182.html
   My bibliography  Save this article

Optimal hedging via large deviation

Author

Listed:
  • Stutzer, Michael

Abstract

The criterion of minimizing the cumulative hedged returns’ probability of underperforming a benchmark provides a framework for evaluating short-term hedges that are rolled over to produce longer-term hedges. Large deviations theory can be used to either parametrically or nonparametrically estimate underperformance probabilities for cumulative hedged returns produced by roll-overs, providing a straightforward way to find optimal hedge ratios. Optimal hedges using soybean futures are constructed to illustrate the procedures, and their relationship to the popular hedging criteria that are motivated by normality.

Suggested Citation

  • Stutzer, Michael, 2013. "Optimal hedging via large deviation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(15), pages 3177-3182.
  • Handle: RePEc:eee:phsmap:v:392:y:2013:i:15:p:3177-3182
    DOI: 10.1016/j.physa.2013.03.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437113002392
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2013.03.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dilip B. Madan & Peter P. Carr & Eric C. Chang, 1998. "The Variance Gamma Process and Option Pricing," Review of Finance, European Finance Association, vol. 2(1), pages 79-105.
    2. Michael Stutzer, 2011. "Portfolio choice with endogenous utility: a large deviations approach," World Scientific Book Chapters, in: Leonard C MacLean & Edward O Thorp & William T Ziemba (ed.), THE KELLY CAPITAL GROWTH INVESTMENT CRITERION THEORY and PRACTICE, chapter 43, pages 619-640, World Scientific Publishing Co. Pte. Ltd..
    3. Yuichi Kitamura & Michael Stutzer, 1997. "An Information-Theoretic Alternative to Generalized Method of Moments Estimation," Econometrica, Econometric Society, vol. 65(4), pages 861-874, July.
    4. Chris Brooks & Alešs Černý & Joëlle Miffre, 2012. "Optimal hedging with higher moments," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 32(10), pages 909-944, October.
    5. Williams, Noah, 2004. "Small noise asymptotics for a stochastic growth model," Journal of Economic Theory, Elsevier, vol. 119(2), pages 271-298, December.
    6. Duffy, Ken & Lobunets, Olena & Suhov, Yuri, 2007. "Loss aversion, large deviation preferences and optimal portfolio weights for some classes of return processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(2), pages 408-422.
    7. Didier Sornette, 1998. "Large deviations and portfolio optimization," Papers cond-mat/9802059, arXiv.org, revised Jun 1998.
    8. F. Douglas Foster & Charles H. Whiteman, 2002. "Bayesian Cross Hedging: An Example From the Soybean Market," Australian Journal of Management, Australian School of Business, vol. 27(2), pages 95-122, December.
    9. Sornette, Didier, 1998. "Large deviations and portfolio optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 256(1), pages 251-283.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stutzer, Michael, 2020. "Persistence of averages in financial Markov Switching models: A large deviations approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huyen Pham, 2007. "Some applications and methods of large deviations in finance and insurance," Papers math/0702473, arXiv.org, revised Feb 2007.
    2. Stutzer, Michael, 2020. "Persistence of averages in financial Markov Switching models: A large deviations approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    3. Youngha Cho & Soosung Hwang & Steve Satchell, 2012. "The Optimal Mortgage Loan Portfolio in UK Regional Residential Real Estate," The Journal of Real Estate Finance and Economics, Springer, vol. 45(3), pages 645-677, October.
    4. Y. Malevergne & D. Sornette, 2003. "VaR-Efficient Portfolios for a Class of Super- and Sub-Exponentially Decaying Assets Return Distributions," Papers physics/0301009, arXiv.org.
    5. Yang (Greg) Hou & Mark Holmes, 2020. "Do higher order moments of return distribution provide better decisions in minimum-variance hedging? Evidence from US stock index futures," Australian Journal of Management, Australian School of Business, vol. 45(2), pages 240-265, May.
    6. Y. Malevergne & D. Sornette, 2001. "General framework for a portfolio theory with non-Gaussian risks and non-linear correlations," Papers cond-mat/0103020, arXiv.org.
    7. J. V. Andersen & D. Sornette, 1999. "Have your cake and eat it too: increasing returns while lowering large risks!," Papers cond-mat/9907217, arXiv.org.
    8. Richard B. Sowers, 2009. "Exact Pricing Asymptotics of Investment-Grade Tranches of Synthetic CDO's Part I: A Large Homogeneous Pool," Papers 0903.4475, arXiv.org.
    9. Cornelis A Los, 2005. "Why VaR FailsLong Memory and Extreme Events in Financial Markets," The IUP Journal of Financial Economics, IUP Publications, vol. 0(3), pages 19-36, September.
    10. D. Sornette & P. Simonetti & J.V. Andersen, 1999. ""Nonlinear" covariance matrix and portfolio theory for non-Gaussian multivariate distributions," Finance 9902004, University Library of Munich, Germany.
    11. Zhang, Qunzhi & Sornette, Didier & Balcilar, Mehmet & Gupta, Rangan & Ozdemir, Zeynel Abidin & Yetkiner, Hakan, 2016. "LPPLS bubble indicators over two centuries of the S&P 500 index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 126-139.
    12. Hansen, Lars Peter, 2013. "Uncertainty Outside and Inside Economic Models," Nobel Prize in Economics documents 2013-7, Nobel Prize Committee.
    13. Chang, Jinyuan & Chen, Song Xi & Chen, Xiaohong, 2015. "High dimensional generalized empirical likelihood for moment restrictions with dependent data," Journal of Econometrics, Elsevier, vol. 185(1), pages 283-304.
    14. Lord, Roger & Fang, Fang & Bervoets, Frank & Oosterlee, Kees, 2007. "A fast and accurate FFT-based method for pricing early-exercise options under Lévy processes," MPRA Paper 1952, University Library of Munich, Germany.
    15. Paulo M. D. C. Parente & Richard J. Smith, 2021. "Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
    16. Carlo Altavilla & Raffaella Giacomini & Giuseppe Ragusa, 2017. "Anchoring the yield curve using survey expectations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1055-1068, September.
    17. Mei Xing, 2017. "Existence Conditions of Super-Replication Cost in a Multinomial Model," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 9(4), pages 185-195, August.
    18. Buchmann, Boris & Kaehler, Benjamin & Maller, Ross & Szimayer, Alexander, 2017. "Multivariate subordination using generalised Gamma convolutions with applications to Variance Gamma processes and option pricing," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2208-2242.
    19. Yun, Jaeho, 2014. "Out-of-sample density forecasts with affine jump diffusion models," Journal of Banking & Finance, Elsevier, vol. 47(C), pages 74-87.
    20. Xiaosheng Mu & Luciano Pomatto & Philipp Strack & Omer Tamuz, 2021. "From Blackwell Dominance in Large Samples to Rényi Divergences and Back Again," Econometrica, Econometric Society, vol. 89(1), pages 475-506, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:15:p:3177-3182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.