IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Optimal hedging via large deviation

  • Stutzer, Michael
Registered author(s):

    The criterion of minimizing the cumulative hedged returns’ probability of underperforming a benchmark provides a framework for evaluating short-term hedges that are rolled over to produce longer-term hedges. Large deviations theory can be used to either parametrically or nonparametrically estimate underperformance probabilities for cumulative hedged returns produced by roll-overs, providing a straightforward way to find optimal hedge ratios. Optimal hedges using soybean futures are constructed to illustrate the procedures, and their relationship to the popular hedging criteria that are motivated by normality.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437113002392
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Physica A: Statistical Mechanics and its Applications.

    Volume (Year): 392 (2013)
    Issue (Month): 15 ()
    Pages: 3177-3182

    as
    in new window

    Handle: RePEc:eee:phsmap:v:392:y:2013:i:15:p:3177-3182
    Contact details of provider: Web page: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Williams, Noah, 2004. "Small noise asymptotics for a stochastic growth model," Journal of Economic Theory, Elsevier, vol. 119(2), pages 271-298, December.
    2. Chris Brooks & Alešs Černý & Joëlle Miffre, 2012. "Optimal hedging with higher moments," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 32(10), pages 909-944, October.
    3. F. Douglas Foster & Charles H. Whiteman, 2002. "Bayesian Cross Hedging: An Example From the Soybean Market," Australian Journal of Management, Australian School of Business, vol. 27(2), pages 95-122, December.
    4. Sornette, Didier, 1998. "Large deviations and portfolio optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 256(1), pages 251-283.
    5. Duffy, Ken & Lobunets, Olena & Suhov, Yuri, 2007. "Loss aversion, large deviation preferences and optimal portfolio weights for some classes of return processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(2), pages 408-422.
    6. Didier Sornette, 1998. "Large deviations and portfolio optimization," Papers cond-mat/9802059, arXiv.org, revised Jun 1998.
    7. Yuichi Kitamura & Michael Stutzer, 1997. "An Information-Theoretic Alternative to Generalized Method of Moments Estimation," Econometrica, Econometric Society, vol. 65(4), pages 861-874, July.
    8. Stutzer, Michael, 2003. "Portfolio choice with endogenous utility: a large deviations approach," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 365-386.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:15:p:3177-3182. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.