IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v391y2012i22p5598-5610.html
   My bibliography  Save this article

A Langevin approach to the Log–Gauss–Pareto composite statistical structure

Author

Listed:
  • Eliazar, Iddo I.
  • Cohen, Morrel H.

Abstract

The distribution of wealth in human populations displays a Log–Gauss–Pareto composite statistical structure: its density is Log–Gauss in its central body, and follows power-law decay in its tails. This composite statistical structure is further observed in other complex systems, and on a logarithmic scale it displays a Gauss-Exponential structure: its density is Gauss in its central body, and follows exponential decay in its tails. In this paper we establish an equilibrium Langevin explanation for this statistical phenomenon, and show that: (i) the stationary distributions of Langevin dynamics with sigmoidal force functions display a Gauss-Exponential composite statistical structure; (ii) the stationary distributions of geometric Langevin dynamics with sigmoidal force functions display a Log–Gauss–Pareto composite statistical structure. This equilibrium Langevin explanation is universal — as it is invariant with respect to the specific details of the sigmoidal force functions applied, and as it is invariant with respect to the specific statistics of the underlying noise.

Suggested Citation

  • Eliazar, Iddo I. & Cohen, Morrel H., 2012. "A Langevin approach to the Log–Gauss–Pareto composite statistical structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5598-5610.
  • Handle: RePEc:eee:phsmap:v:391:y:2012:i:22:p:5598-5610 DOI: 10.1016/j.physa.2012.06.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437112005286
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aleksander Janicki & Aleksander Weron, 1994. "Simulation and Chaotic Behavior of Alpha-stable Stochastic Processes," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook9401.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luckstead, Jeff & Devadoss, Stephen & Danforth, Diana, 2017. "The size distributions of all Indian cities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 237-249.
    2. repec:eee:phsmap:v:490:y:2018:i:c:p:278-288 is not listed on IDEAS
    3. Luckstead, Jeff & Devadoss, Stephen, 2017. "Pareto tails and lognormal body of US cities size distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 573-578.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:22:p:5598-5610. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.