IDEAS home Printed from
   My bibliography  Save this article

Accurate estimator of correlations between asynchronous signals


  • Tóth, Bence
  • Kertész, János


The estimation of the correlation between time series is often hampered by the asynchronicity of the signals. Cumulating data within a time window suppresses this source of noise but weakens the statistics. We present a method to estimate correlations without applying long time windows. We decompose the correlations of data cumulated over a long window using decay of lagged correlations as calculated from short window data. This increases the accuracy of the estimated correlation significantly and decreases the necessary effort of calculations both in real and computer experiments.

Suggested Citation

  • Tóth, Bence & Kertész, János, 2009. "Accurate estimator of correlations between asynchronous signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1696-1705.
  • Handle: RePEc:eee:phsmap:v:388:y:2009:i:8:p:1696-1705 DOI: 10.1016/j.physa.2008.12.062

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Scalas, Enrico, 2006. "The application of continuous-time random walks in finance and economics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 362(2), pages 225-239.
    2. Valeri Voev & Asger Lunde, 2007. "Integrated Covariance Estimation using High-frequency Data in the Presence of Noise," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 5(1), pages 68-104.
    3. Precup, Ovidiu V. & Iori, Giulia, 2004. "A comparison of high-frequency cross-correlation measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 252-256.
    4. Maria Elvira Mancino & Paul Malliavin, 2002. "Fourier series method for measurement of multivariate volatilities," Finance and Stochastics, Springer, vol. 6(1), pages 49-61.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Materassi, Donatello & Innocenti, Giacomo, 2009. "Unveiling the connectivity structure of financial networks via high-frequency analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(18), pages 3866-3878.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:388:y:2009:i:8:p:1696-1705. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.