IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v388y2009i17p3643-3650.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Link prediction in a user–object network based on time-weighted resource allocation

Author

Listed:
  • Liu, Ji
  • Deng, Guishi

Abstract

Human dynamics has attracted much attention in recent years. Quantitative understanding of the statistical mechanics of human behavior in an online network is a new challenge for researchers. In an online network, users’ behaviors can be abstracted and projected into a user–object network. Many complex problems concerning resource diffusion, such as recommendation system, network flow and social network behavior, can be solved partially by this user–object network. Although some researchers have given some statistical description of the network recently, little work has been done on link prediction in a user–object network. The objective of this paper is to predict new links based on historical ones in a user–object network. When link weight is taken into consideration, we find that both time attenuation and diversion delay play key roles in link prediction in an user–object network. We then combine these two time effect factors of link weight with users’ lifespans and construct the time-weighted network (TWN) model on the basis of resource allocation. Experimental results show the TWN model can greatly enhance the link prediction accuracy.

Suggested Citation

  • Liu, Ji & Deng, Guishi, 2009. "Link prediction in a user–object network based on time-weighted resource allocation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(17), pages 3643-3650.
  • Handle: RePEc:eee:phsmap:v:388:y:2009:i:17:p:3643-3650
    DOI: 10.1016/j.physa.2009.05.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437109004099
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2009.05.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gergely Palla & Imre Derényi & Illés Farkas & Tamás Vicsek, 2005. "Uncovering the overlapping community structure of complex networks in nature and society," Nature, Nature, vol. 435(7043), pages 814-818, June.
    2. Medo, Matúš, 2006. "Distance-dependent connectivity: Yet another approach to the small-world phenomenon," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(2), pages 617-628.
    3. Grabowski, Andrzej, 2007. "Interpersonal interactions and human dynamics in a large social network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(1), pages 363-369.
    4. Liu, Jian-Guo & Xuan, Zhao-Guo & Dang, Yan-Zhong & Guo, Qiang & Wang, Zhong-Tuo, 2007. "Weighted network properties of Chinese nature science basic research," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(1), pages 302-314.
    5. Blattner, Marcel & Zhang, Yi-Cheng & Maslov, Sergei, 2007. "Exploring an opinion network for taste prediction: An empirical study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 373(C), pages 753-758.
    6. Aaron Clauset & Cristopher Moore & M. E. J. Newman, 2008. "Hierarchical structure and the prediction of missing links in networks," Nature, Nature, vol. 453(7191), pages 98-101, May.
    7. Tao Zhou & Linyuan Lü & Yi-Cheng Zhang, 2009. "Predicting missing links via local information," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(4), pages 623-630, October.
    8. A. Grabowski & N. Kruszewska & R. A. Kosiński, 2008. "Properties of on-line social systems," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 66(1), pages 107-113, November.
    9. Holme, Petter, 2007. "Scale-free networks with a large- to hypersmall-world transition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(1), pages 315-322.
    10. Grabowski, Andrzej, 2009. "Opinion formation in a social network: The role of human activity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(6), pages 961-966.
    11. Medo, Matúš & Zhang, Yi-Cheng, 2008. "Market model with heterogeneous buyers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2889-2908.
    12. Liu, Jianguo & Dang, Yanzhong & Wang, Zhongtuo & Zhou, Tao, 2006. "Relationship between the in-degree and out-degree of WWW," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 861-869.
    13. Liu, Jianguo & Dang, Yanzhong & Wang, Zhongtuo, 2006. "Complex network properties of Chinese natural science basic research," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 578-586.
    14. Jian-Guo Liu & Bing-Hong Wang & Qiang Guo, 2009. "Improved Collaborative Filtering Algorithm Via Information Transformation," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 20(02), pages 285-293.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Wen-Jun & Guo, Qiang & Liu, Jian-Guo, 2014. "Improved hybrid information filtering based on limited time window," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 192-197.
    2. Kumar, Ajay & Singh, Shashank Sheshar & Singh, Kuldeep & Biswas, Bhaskar, 2020. "Link prediction techniques, applications, and performance: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    3. Lingling Zhang & Jing Li & Qiuliu Zhang & Fan Meng & Weili Teng, 2019. "Domain Knowledge-Based Link Prediction in Customer-Product Bipartite Graph for Product Recommendation," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 311-338, January.
    4. Wang, Yang & Han, Lixin, 2020. "Personalized recommendation via network-based inference with time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    5. Wen, Yuan & Liu, Yun & Zhang, Zhen-Jiang & Xiong, Fei & Cao, Wei, 2014. "Compare two community-based personalized information recommendation algorithms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 199-209.
    6. Kart, Ozge & Ulucay, Oguzhan & Bingol, Berkay & Isik, Zerrin, 2020. "A machine learning-based recommendation model for bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    7. Liu, Chuang & Zhou, Wei-Xing, 2012. "Heterogeneity in initial resource configurations improves a network-based hybrid recommendation algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5704-5711.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Yan-Hong & Xie, Wen-Jie & Li, Ming-Xia & Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2017. "Statistical properties of user activity fluctuations in virtual worlds," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 271-278.
    2. Jiang, Zhi-Qiang & Ren, Fei & Gu, Gao-Feng & Tan, Qun-Zhao & Zhou, Wei-Xing, 2010. "Statistical properties of online avatar numbers in a massive multiplayer online role-playing game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(4), pages 807-814.
    3. Liu, Chuang & Zhou, Wei-Xing, 2012. "Heterogeneity in initial resource configurations improves a network-based hybrid recommendation algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5704-5711.
    4. Xia, Yongxiang & Pang, Wenbo & Zhang, Xuejun, 2021. "Mining relationships between performance of link prediction algorithms and network structure," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    5. Amulyashree Sridhar & Sharvani GS & AH Manjunatha Reddy & Biplab Bhattacharjee & Kalyan Nagaraj, 2019. "The Eminence of Co-Expressed Ties in Schizophrenia Network Communities," Data, MDPI, vol. 4(4), pages 1-23, November.
    6. Wang, Zuxi & Wu, Yao & Li, Qingguang & Jin, Fengdong & Xiong, Wei, 2016. "Link prediction based on hyperbolic mapping with community structure for complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 609-623.
    7. Lee, Yan-Li & Zhou, Tao, 2021. "Collaborative filtering approach to link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    8. Peng Liu & Liang Gui & Huirong Wang & Muhammad Riaz, 2022. "A Two-Stage Deep-Learning Model for Link Prediction Based on Network Structure and Node Attributes," Sustainability, MDPI, vol. 14(23), pages 1-15, December.
    9. Wu, Tao & Chen, Leiting & Zhong, Linfeng & Xian, Xingping, 2017. "Predicting the evolution of complex networks via similarity dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 662-672.
    10. Akshat Singhal & Song Cao & Christopher Churas & Dexter Pratt & Santo Fortunato & Fan Zheng & Trey Ideker, 2020. "Multiscale community detection in Cytoscape," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-10, October.
    11. Zhang, Xue & Wang, Xiaojie & Zhao, Chengli & Yi, Dongyun & Xie, Zheng, 2014. "Degree-corrected stochastic block models and reliability in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 553-559.
    12. Chi, Kuo & Qu, Hui & Yin, Guisheng, 2022. "Link prediction for existing links in dynamic networks based on the attraction force," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    13. Lü, Linyuan & Zhou, Tao, 2011. "Link prediction in complex networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1150-1170.
    14. Zhou, Tao & Lee, Yan-Li & Wang, Guannan, 2021. "Experimental analyses on 2-hop-based and 3-hop-based link prediction algorithms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    15. Wang, Jiang-Pan & Guo, Qiang & Yang, Guang-Yong & Liu, Jian-Guo, 2015. "Improved knowledge diffusion model based on the collaboration hypernetwork," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 250-256.
    16. Ding, Jingyi & Jiao, Licheng & Wu, Jianshe & Hou, Yunting & Qi, Yutao, 2015. "Prediction of missing links based on multi-resolution community division," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 76-85.
    17. Wang, Junjie & Zhou, Shuigeng & Guan, Jihong, 2011. "Characteristics of real futures trading networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(2), pages 398-409.
    18. Wang, Xiaojie & Zhang, Xue & Zhao, Chengli & Xie, Zheng & Zhang, Shengjun & Yi, Dongyun, 2015. "Predicting link directions using local directed path," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 260-267.
    19. Guan, Qing & An, Haizhong & Gao, Xiangyun & Huang, Shupei & Li, Huajiao, 2016. "Estimating potential trade links in the international crude oil trade: A link prediction approach," Energy, Elsevier, vol. 102(C), pages 406-415.
    20. Ankita Singh & Nanhay Singh, 2022. "An approach for predicting missing links in social network using node attribute and path information," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 944-956, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:388:y:2009:i:17:p:3643-3650. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.