IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v550y2020ics0378437119321739.html
   My bibliography  Save this article

Personalized recommendation via network-based inference with time

Author

Listed:
  • Wang, Yang
  • Han, Lixin

Abstract

Wide attention has been given to the bipartite network-based recommendation method because of its higher accuracy, better diversity and lower computational cost than the global rank method and the standard collaborative filtering method. However, prior studies on bipartite network treated equally the ratings obtained at different time windows, which clear mismatches with the practical situation because the items collected recently should maintain more significance than those collected long ago. Besides, time impact has not yet been systematically studied as an essential context with the consideration of user preference drift in bipartite network. This paper proposes a personalized recommendation method named network-based inference with time (NBIt). We process time information firstly by mapping the ratings in short-time windows to long-time windows. Then, a suitable time attenuation function is selected to ensure a real reflection of user preference. And then, we set the initial resource and attractive power of network. Finally, the recommendation process is elaborated. To avoid the risk of optimized bias and over-fitting, we employ the triple division technique to optimize the long time window parameter and the attraction power parameter. Experimental results from two benchmark datasets of different scales show that the proposed NBIt algorithm surpasses the other five representative and advanced bipartite network recommendation methods in both accuracy and personalization. Furthermore, the proposed NBIt method can be used as a framework in which other network-based recommendation algorithms along with their variants are run with accuracy and diversity likely to be improved.

Suggested Citation

  • Wang, Yang & Han, Lixin, 2020. "Personalized recommendation via network-based inference with time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
  • Handle: RePEc:eee:phsmap:v:550:y:2020:i:c:s0378437119321739
    DOI: 10.1016/j.physa.2019.123917
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119321739
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.123917?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Wen-Jun & Dong, Qiang & Shi, Yang-Bo & Fu, Yan & He, Jia-Lin, 2017. "Effect of recent popularity on heat-conduction based recommendation models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 334-343.
    2. Guo, Qiang & Song, Wen-Jun & Hou, Lei & Zhang, Yi-Lu & Liu, Jian-Guo, 2014. "Effect of the time window on the heat-conduction information filtering model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 15-21.
    3. Liu, Run-Ran & Liu, Jian-Guo & Jia, Chun-Xiao & Wang, Bing-Hong, 2010. "Personal recommendation via unequal resource allocation on bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3282-3289.
    4. Yu, Fei & Zeng, An & Gillard, Sébastien & Medo, Matúš, 2016. "Network-based recommendation algorithms: A review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 192-208.
    5. Liu, Ji & Deng, Guishi, 2009. "Link prediction in a user–object network based on time-weighted resource allocation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(17), pages 3643-3650.
    6. Chen, Guilin & Gao, Tianrun & Zhu, Xuzhen & Tian, Hui & Yang, Zhao, 2017. "Personalized recommendation based on preferential bidirectional mass diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 397-404.
    7. Liu, Jian-Guo & Guo, Qiang & Zhang, Yi-Cheng, 2011. "Information filtering via weighted heat conduction algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(12), pages 2414-2420.
    8. Song, Wen-Jun & Guo, Qiang & Liu, Jian-Guo, 2014. "Improved hybrid information filtering based on limited time window," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 192-197.
    9. Ma, Wenping & Feng, Xiang & Wang, Shanfeng & Gong, Maoguo, 2016. "Personalized recommendation based on heat bidirectional transfer," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 713-721.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Ling-Jiao & Gao, Jian, 2018. "A trust-based recommendation method using network diffusion processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 679-691.
    2. Zhu, Xuzhen & Tian, Hui & Zhang, Tianqiao, 2018. "Symmetrical information filtering via punishing superfluous diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 1-9.
    3. Song, Wen-Jun & Guo, Qiang & Liu, Jian-Guo, 2014. "Improved hybrid information filtering based on limited time window," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 192-197.
    4. Jiang, Liang-Chao & Liu, Run-Ran & Jia, Chun-Xiao, 2022. "User-location distribution serves as a useful feature in item-based collaborative filtering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    5. Yin, Likang & Deng, Yong, 2018. "Measuring transferring similarity via local information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 498(C), pages 102-115.
    6. Hu, Liang & Ren, Liang & Lin, Wenbin, 2018. "A reconsideration of negative ratings for network-based recommendation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 690-701.
    7. Yin, Chun-Xia & Peng, Qin-Ke & Chu, Tao, 2012. "Personal artist recommendation via a listening and trust preference network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(5), pages 1991-1999.
    8. Yu, Fei & Zeng, An & Gillard, Sébastien & Medo, Matúš, 2016. "Network-based recommendation algorithms: A review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 192-208.
    9. Chen, Ling-Jiao & Zhang, Zi-Ke & Liu, Jin-Hu & Gao, Jian & Zhou, Tao, 2017. "A vertex similarity index for better personalized recommendation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 607-615.
    10. Ramezani, Mohsen & Moradi, Parham & Akhlaghian, Fardin, 2014. "A pattern mining approach to enhance the accuracy of collaborative filtering in sparse data domains," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 408(C), pages 72-84.
    11. Liu, Chuang & Zhou, Wei-Xing, 2012. "Heterogeneity in initial resource configurations improves a network-based hybrid recommendation algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5704-5711.
    12. Hou, Lei & Huang, Yichen, 2024. "Optimizing the connectedness of recommendation networks for retrieval accuracy and visiting diversity of random walks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    13. Liu, Jian-Guo & Li, Ren-De & Guo, Qiang & Zhang, Yi-Cheng, 2018. "Collective iteration behavior for online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 490-497.
    14. Kart, Ozge & Ulucay, Oguzhan & Bingol, Berkay & Isik, Zerrin, 2020. "A machine learning-based recommendation model for bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    15. Liu, Jin-Hu & Zhu, Yu-Xiao & Zhou, Tao, 2016. "Improving personalized link prediction by hybrid diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 199-207.
    16. Zhang, Shujuan & Jin, Zhen & Zhang, Juan, 2016. "The dynamical modeling and simulation analysis of the recommendation on the user–movie network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 310-319.
    17. Li, Ren-De & Liu, Jian-Guo & Guo, Qiang & Zhang, Yi-Cheng, 2018. "Social signature identification of dynamical social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 213-222.
    18. Hao Liao & Xiao-Min Huang & Xing-Tong Wu & Ming-Kai Liu & Alexandre Vidmer & Mingyang Zhou & Yi-Cheng Zhang, 2019. "Enhancing countries' fitness with recommender systems on the international trade network," Papers 1904.02412, arXiv.org.
    19. Zhao, Zhili & Wu, Simin & Luo, Ge & Zhang, Nana & Hu, Ahui & Liu, Jun, 2024. "Mining odd-length paths for link prediction in bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 646(C).
    20. Hou, Lei & Liu, Kecheng & Liu, Jianguo & Zhang, Runtong, 2017. "Solving the stability–accuracy–diversity dilemma of recommender systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 415-424.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:550:y:2020:i:c:s0378437119321739. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.