IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v382y2007i1p213-218.html
   My bibliography  Save this article

Market memory and fat tail consequences in option pricing on the expOU stochastic volatility model

Author

Listed:
  • Perelló, Josep

Abstract

The expOU stochastic volatility model is capable of reproducing fairly well most important statistical properties of financial markets daily data. Among them, the presence of multiple time scales in the volatility autocorrelation is perhaps the most relevant which makes appear fat tails in the return distributions. This paper wants to go further on with the expOU model we have studied in Ref. [J. Masoliver, J. Perelló, Quant. Finance 6 (2006) 423] by exploring an aspect of practical interest. Having as a benchmark the parameters estimated from the Dow Jones daily data, we want to compute the price for the European option. This is actually done by Monte Carlo, running a large number of simulations. Our main interest is to “see” the effects of a long-range market memory from our expOU model in its subsequent European call option. We pay attention to the effects of the existence of a broad range of time scales in the volatility. We find that a richer set of time scales brings the price of the option higher. This appears in clear contrast to the presence of memory in the price itself which makes the price of the option cheaper.

Suggested Citation

  • Perelló, Josep, 2007. "Market memory and fat tail consequences in option pricing on the expOU stochastic volatility model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(1), pages 213-218.
  • Handle: RePEc:eee:phsmap:v:382:y:2007:i:1:p:213-218
    DOI: 10.1016/j.physa.2007.02.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437107001537
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2007.02.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bouchaud,Jean-Philippe & Potters,Marc, 2003. "Theory of Financial Risk and Derivative Pricing," Cambridge Books, Cambridge University Press, number 9780521819169, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei, Yu, 2012. "Forecasting volatility of fuel oil futures in China: GARCH-type, SV or realized volatility models?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5546-5556.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabrizio Pomponio & Frédéric Abergel, 2013. "Multiple-limit trades : empirical facts and application to lead-lag measures," Post-Print hal-00745317, HAL.
    2. Lubashevsky, Ihor & Friedrich, Rudolf & Heuer, Andreas & Ushakov, Andrey, 2009. "Generalized superstatistics of nonequilibrium Markovian systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(21), pages 4535-4550.
    3. Assaf Almog & Ferry Besamusca & Mel MacMahon & Diego Garlaschelli, 2015. "Mesoscopic Community Structure of Financial Markets Revealed by Price and Sign Fluctuations," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-16, July.
    4. Sebastiano Michele Zema & Giorgio Fagiolo & Tiziano Squartini & Diego Garlaschelli, 2021. "Mesoscopic Structure of the Stock Market and Portfolio Optimization," Papers 2112.06544, arXiv.org.
    5. S. Reimann, 2007. "Price dynamics from a simple multiplicative random process model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 56(4), pages 381-394, April.
    6. Dror Y. Kenett & Xuqing Huang & Irena Vodenska & Shlomo Havlin & H. Eugene Stanley, 2015. "Partial correlation analysis: applications for financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 15(4), pages 569-578, April.
    7. W.-S. Jung & F. Z. Wang & S. Havlin & T. Kaizoji & H.-T. Moon & H. E. Stanley, 2008. "Volatility return intervals analysis of the Japanese market," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 62(1), pages 113-119, March.
    8. Nicolas Langrené & Geoffrey Lee & Zili Zhu, 2016. "Switching To Nonaffine Stochastic Volatility: A Closed-Form Expansion For The Inverse Gamma Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(05), pages 1-37, August.
    9. Xiao, Di & Wang, Jun, 2021. "Attitude interaction for financial price behaviours by contact system with small-world network topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    10. Paulo Ferreira & Éder J.A.L. Pereira & Hernane B.B. Pereira, 2020. "From Big Data to Econophysics and Its Use to Explain Complex Phenomena," JRFM, MDPI, vol. 13(7), pages 1-10, July.
    11. V. Alfi & L. Pietronero & A. Zaccaria, 2008. "Minimal Agent Based Model For The Origin And Self-Organization Of Stylized Facts In Financial Markets," Papers 0807.1888, arXiv.org.
    12. Denis Phan, 2006. "Discrete Choices under Social Influence:Generic Properties," Post-Print halshs-00105857, HAL.
    13. Slanina, František, 2010. "A contribution to the systematics of stochastic volatility models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3230-3239.
    14. Dibeh, Ghassan, 2007. "Contagion effects in a chartist–fundamentalist model with time delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(1), pages 52-57.
    15. Guégan, Dominique & Ielpo, Florian & Lalaharison, Hanjarivo, 2013. "Option pricing with discrete time jump processes," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2417-2445.
    16. Till Massing, 2018. "Simulation of Student–Lévy processes using series representations," Computational Statistics, Springer, vol. 33(4), pages 1649-1685, December.
    17. Guevara Hidalgo, Esteban, 2017. "Bin size independence in intra-day seasonalities for relative prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 722-732.
    18. F. Wang & P. Weber & K. Yamasaki & S. Havlin & H. E. Stanley, 2007. "Statistical regularities in the return intervals of volatility," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 55(2), pages 123-133, January.
    19. Anufriev, Mikhail & Bottazzi, Giulio & Marsili, Matteo & Pin, Paolo, 2012. "Excess covariance and dynamic instability in a multi-asset model," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1142-1161.
    20. X. F. Jiang & T. T. Chen & B. Zheng, 2013. "Time-reversal asymmetry in financial systems," Papers 1308.0669, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:382:y:2007:i:1:p:213-218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.