IDEAS home Printed from https://ideas.repec.org/a/eee/mateco/v46y2010i3p279-292.html
   My bibliography  Save this article

Equivalence of utilitarian maximal and weakly maximal programs

Author

Listed:
  • Banerjee, Kuntal
  • Mitra, Tapan

Abstract

For a class of aggregative optimal growth models, which allow for a non-convex and non-differentiable production technology, this paper examines whether the set of utilitarian maximal programs coincides with the set of weakly maximal programs. It identifies a condition, called the Phelps-Koopmans condition, under which the equivalence result holds. An example is provided to demonstrate that the equivalence result is invalid when the Phelps-Koopmans condition does not hold.

Suggested Citation

  • Banerjee, Kuntal & Mitra, Tapan, 2010. "Equivalence of utilitarian maximal and weakly maximal programs," Journal of Mathematical Economics, Elsevier, vol. 46(3), pages 279-292, May.
  • Handle: RePEc:eee:mateco:v:46:y:2010:i:3:p:279-292
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4068(09)00136-0
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Basu, Kaushik & Mitra, Tapan, 2007. "Utilitarianism for infinite utility streams: A new welfare criterion and its axiomatic characterization," Journal of Economic Theory, Elsevier, vol. 133(1), pages 350-373, March.
    2. Majumdar, Mukul & Mitra, Tapan, 1982. "Intertemporal allocation with a non-convex technology: The aggregative framework," Journal of Economic Theory, Elsevier, vol. 27(1), pages 101-136, June.
    3. Geir Asheim & Bertil Tungodden, 2004. "Resolving distributional conflicts between generations," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 24(1), pages 221-230, July.
    4. W. A. Brock, 1970. "On Existence of Weakly Maximal Programmes in a Multi-Sector Economy," Review of Economic Studies, Oxford University Press, vol. 37(2), pages 275-280.
    5. Mukul Majumdar & Tapan Mitra, 1983. "Dynamic Optimization with a Non-Convex Technology: The Case of a Linear Objective Function," Review of Economic Studies, Oxford University Press, vol. 50(1), pages 143-151.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Utilitarian maximal Weakly maximal Phelps-Koopmans condition Aggregative growth models;

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • D90 - Microeconomics - - Micro-Based Behavioral Economics - - - General
    • E10 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - General
    • O41 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - One, Two, and Multisector Growth Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:46:y:2010:i:3:p:279-292. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jmateco .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.