IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v233y2025icp60-74.html
   My bibliography  Save this article

A nonconservative macroscopic traffic flow model in a two-dimensional urban-porous city

Author

Listed:
  • García-Chan, Néstor
  • Alvarez-Vázquez, Lino J.
  • Martínez, Aurea
  • Vázquez-Méndez, Miguel E.

Abstract

In this paper we propose a novel traffic flow model based on understanding the city as a porous media, this is, streets and building-blocks characterizing the urban landscape are seen now as the fluid-phase and the solid-phase of a porous media, respectively. Moreover, based in the interchange of mass in the porous media models, we can model the interchange of cars between streets and off-street parking-spaces. Therefore, our model is not a standard conservation law, being formulated as the coupling of a non-stationary convection–diffusion–reaction PDE with a Darcy–Brinkman–Forchheimer PDE system. To solve this model, the classical Galerkin P1 finite element method combined with an explicit time marching scheme of strong stability preserving type was enough to stabilize our numerical solutions. Numerical experiences on an urban-porous domain inspired by the city of Guadalajara (Mexico) allow us to simulate the influence of the porosity terms on the traffic speed, the traffic flow at rush-valley hours, and traffic congestion due to the lack of parking spaces.

Suggested Citation

  • García-Chan, Néstor & Alvarez-Vázquez, Lino J. & Martínez, Aurea & Vázquez-Méndez, Miguel E., 2025. "A nonconservative macroscopic traffic flow model in a two-dimensional urban-porous city," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 233(C), pages 60-74.
  • Handle: RePEc:eee:matcom:v:233:y:2025:i:c:p:60-74
    DOI: 10.1016/j.matcom.2025.01.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475425000163
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2025.01.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Yan-Qun & Zhou, Shu-Guang & Tian, Fang-Bao, 2015. "A higher-order macroscopic model for bi-direction pedestrian flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 425(C), pages 69-78.
    2. Néstor García-Chan & Juan A. Licea-Salazar & Luis G. Gutierrez-Ibarra, 2023. "Urban Heat Island Dynamics in an Urban–Rural Domain with Variable Porosity: Numerical Methodology and Simulation," Mathematics, MDPI, vol. 11(5), pages 1-18, February.
    3. Leclercq, Ludovic & Sénécat, Alméria & Mariotte, Guilhem, 2017. "Dynamic macroscopic simulation of on-street parking search: A trip-based approach," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 268-282.
    4. Daganzo, Carlos F., 1995. "Requiem for second-order fluid approximations of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 29(4), pages 277-286, August.
    5. Tingzhen Ming & Shengnan Lian & Yongjia Wu & Tianhao Shi & Chong Peng & Yueping Fang & Renaud de Richter & Nyuk Hien Wong, 2021. "Numerical Investigation on the Urban Heat Island Effect by Using a Porous Media Model," Energies, MDPI, vol. 14(15), pages 1-23, August.
    6. Robert Herman & Tenny Lam & Ilya Prigogine, 1972. "Kinetic Theory of Vehicular Traffic: Comparison with Data," Transportation Science, INFORMS, vol. 6(4), pages 440-452, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nacer Sellila & Mohammed Louaked & Waleed Mouhali & Houari Mechkour, 2023. "Optimal Control Strategies for Mitigating Urban Heat Island Intensity in Porous Urban Environments," Mathematics, MDPI, vol. 11(23), pages 1-17, November.
    2. Zhang, Xinying & Pitera, Kelly & Wang, Yuanqing, 2024. "Exploring parking choices under the coexistence of autonomous and conventional vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
    3. Ngoduy, D. & Liu, R., 2007. "Multiclass first-order simulation model to explain non-linear traffic phenomena," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 667-682.
    4. Nanyondo, Josephine & Kasumba, Henry, 2024. "Analysis of heterogeneous vehicular traffic: Using proportional densities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    5. Mohan, Ranju & Ramadurai, Gitakrishnan, 2021. "Multi-class traffic flow model based on three dimensional flow–concentration surface," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 577(C).
    6. Treiber, Martin & Kesting, Arne & Helbing, Dirk, 2010. "Three-phase traffic theory and two-phase models with a fundamental diagram in the light of empirical stylized facts," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 983-1000, September.
    7. Xiaojuan Yu & Vincent A.C. van den Berg, 2024. "Human-driven vehicles’ cruising versus autonomous vehicles’ back- and-forth congestion: The effects on traveling, parking and congestion," Tinbergen Institute Discussion Papers 24-032/VIII, Tinbergen Institute.
    8. Machtalay, A. & Habbal, A. & Ratnani, A. & Kissami, I., 2025. "Computational investigations of a multi-class traffic flow model: Mean-field and microscopic dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 195(C).
    9. Zhang, H. M., 2002. "A non-equilibrium traffic model devoid of gas-like behavior," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 275-290, March.
    10. Kontorinaki, Maria & Spiliopoulou, Anastasia & Roncoli, Claudio & Papageorgiou, Markos, 2017. "First-order traffic flow models incorporating capacity drop: Overview and real-data validation," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 52-75.
    11. Zhang, Qinglong & Liu, Shuzhi, 2023. "The Riemann problem and a Godunov-type scheme for a traffic flow model on two lanes with two velocities," Applied Mathematics and Computation, Elsevier, vol. 436(C).
    12. Tao, Y.Z. & Dong, L.Y., 2017. "A Cellular Automaton model for pedestrian counterflow with swapping," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 475(C), pages 155-168.
    13. Yannis Pavlis & Will Recker, 2009. "A Mathematical Logic Approach for the Transformation of the Linear Conditional Piecewise Functions of Dispersion-and-Store and Cell Transmission Traffic Flow Models into Linear Mixed-Integer Form," Transportation Science, INFORMS, vol. 43(1), pages 98-116, February.
    14. Tang, Tie-Qiao & Shi, Wei-Fang & Huang, Hai-Jun & Wu, Wen-Xiang & Song, Ziqi, 2019. "A route-based traffic flow model accounting for interruption factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 767-785.
    15. Xiangyang Cao & Bingzhong Zhou & Qiang Tang & Jiaqi Li & Donghui Shi, 2018. "Urban Wasteful Transport and Its Estimation Methods," Sustainability, MDPI, vol. 10(12), pages 1-15, December.
    16. Bouadi, Marouane & Jia, Bin & Jiang, Rui & Li, Xingang & Gao, Zi-You, 2022. "Stability analysis of stochastic second-order macroscopic continuum models and numerical simulations," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 193-209.
    17. Zhai, Cong & Wu, Weitiao, 2021. "A continuous traffic flow model considering predictive headway variation and preceding vehicle’s taillight effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    18. Hoogendoorn, Serge P. & Bovy, Piet H. L., 2000. "Continuum modeling of multiclass traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 34(2), pages 123-146, February.
    19. Mourtakos, Vasileios & Mantouka, Eleni G. & Fafoutellis, Panagiotis & Vlahogianni, Eleni I. & Kepaptsoglou, Konstantinos, 2024. "Reconstructing mobility from smartphone data: Empirical evidence of the effects of COVID-19 pandemic crisis on working and leisure," Transport Policy, Elsevier, vol. 146(C), pages 241-254.
    20. Ranju Mohan & Gitakrishnan Ramadurai, 2015. "Submission to the DTA2012 Special Issue: A Case for Higher-Order Traffic Flow Models in DTA," Networks and Spatial Economics, Springer, vol. 15(3), pages 765-790, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:233:y:2025:i:c:p:60-74. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.