IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v230y2025icp501-516.html
   My bibliography  Save this article

A note on the numerical approximation of Greeks for American-style options

Author

Listed:
  • Hout, Karel J. in ’t

Abstract

In this note, we consider the approximation of the Greeks Delta and Gamma of American-style options through the numerical solution of time-dependent partial differential complementarity problems (PDCPs). This approach is very attractive as it can yield accurate approximations to these Greeks at essentially no additional computational cost during the numerical solution of the PDCP for the pertinent option value function. For the temporal discretization, the Crank–Nicolson method is arguably the most popular method in computational finance. It is well-known, however, that this method can have an undesirable convergence behaviour in the approximation of the Greeks Delta and Gamma for American-style options, even when backward Euler damping (Rannacher smoothing) is employed.

Suggested Citation

  • Hout, Karel J. in ’t, 2025. "A note on the numerical approximation of Greeks for American-style options," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 230(C), pages 501-516.
  • Handle: RePEc:eee:matcom:v:230:y:2025:i:c:p:501-516
    DOI: 10.1016/j.matcom.2024.10.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475424004361
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2024.10.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brennan, Michael J & Schwartz, Eduardo S, 1977. "The Valuation of American Put Options," Journal of Finance, American Finance Association, vol. 32(2), pages 449-462, May.
    2. Sam Howison & Christoph Reisinger & Jan Hendrik Witte, 2010. "The Effect of Non-Smooth Payoffs on the Penalty Approximation of American Options," Papers 1008.0836, arXiv.org, revised May 2013.
    3. Karel in 't Hout & Pieter Lamotte, 2022. "Efficient numerical valuation of European options under the two-asset Kou jump-diffusion model," Papers 2207.10060, arXiv.org, revised May 2023.
    4. Khaliq, A.Q.M. & Voss, D.A. & Kazmi, S.H.K., 2006. "A linearly implicit predictor-corrector scheme for pricing American options using a penalty method approach," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 489-502, February.
    5. Khaliq, A.Q.M. & Voss, D.A. & Yousuf, M., 2007. "Pricing exotic options with L-stable Pade schemes," Journal of Banking & Finance, Elsevier, vol. 31(11), pages 3438-3461, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minqiang Li, 2010. "A quasi-analytical interpolation method for pricing American options under general multi-dimensional diffusion processes," Review of Derivatives Research, Springer, vol. 13(2), pages 177-217, July.
    2. Ballestra, Luca Vincenzo & Cecere, Liliana, 2016. "A numerical method to estimate the parameters of the CEV model implied by American option prices: Evidence from NYSE," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 100-106.
    3. Christara, Christina C. & Wu, Ruining, 2022. "Penalty and penalty-like methods for nonlinear HJB PDEs," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    4. Weihan Li & Jin E. Zhang & Xinfeng Ruan & Pakorn Aschakulporn, 2024. "An empirical study on the early exercise premium of American options: Evidence from OEX and XEO options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1117-1153, July.
    5. Joao Felipe Gueiros & Hemanth Chandravamsi & Steven H. Frankel, 2025. "Deep Learning vs. Black-Scholes: Option Pricing Performance on Brazilian Petrobras Stocks," Papers 2504.20088, arXiv.org.
    6. Gong, Pu & Zou, Dong & Wang, Jiayue, 2018. "Pricing and simulation for real estate index options: Radial basis point interpolation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 177-188.
    7. Ballestra, Luca Vincenzo & Pacelli, Graziella & Radi, Davide, 2016. "A very efficient approach for pricing barrier options on an underlying described by the mixed fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 240-248.
    8. Giandomenico, Rossano, 2006. "Valuing an American Put Option," MPRA Paper 20082, University Library of Munich, Germany.
    9. Joseph Y. J. Chow & Amelia C. Regan, 2011. "Real Option Pricing of Network Design Investments," Transportation Science, INFORMS, vol. 45(1), pages 50-63, February.
    10. Engstrom, Malin & Norden, Lars, 2000. "The early exercise premium in American put option prices," Journal of Multinational Financial Management, Elsevier, vol. 10(3-4), pages 461-479, December.
    11. Jérôme Detemple, 2014. "Optimal Exercise for Derivative Securities," Annual Review of Financial Economics, Annual Reviews, vol. 6(1), pages 459-487, December.
    12. In oon Kim & Bong-Gyu Jang & Kyeong Tae Kim, 2013. "A simple iterative method for the valuation of American options," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 885-895, May.
    13. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    14. Cosma, Antonio & Galluccio, Stefano & Scaillet, Olivier, 2012. "Valuing American options using fast recursive projections," Working Papers unige:41856, University of Geneva, Geneva School of Economics and Management.
    15. Oleksandr Zhylyevskyy, 2010. "A fast Fourier transform technique for pricing American options under stochastic volatility," Review of Derivatives Research, Springer, vol. 13(1), pages 1-24, April.
    16. Hadjiyannakis, Steve & Culumovic, Louis & Welch, Robert L., 1998. "The relative mispricing of the constant variance American put model," International Review of Economics & Finance, Elsevier, vol. 7(2), pages 149-171.
    17. Luca Vincenzo Ballestra, 2018. "Fast and accurate calculation of American option prices," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 41(2), pages 399-426, November.
    18. Qianru Shang & Brian Byrne, 2021. "American option pricing: Optimal Lattice models and multidimensional efficiency tests," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(4), pages 514-535, April.
    19. Karel in 't Hout & Radoslav Valkov, 2016. "Numerical study of splitting methods for American option valuation," Papers 1610.09622, arXiv.org.
    20. Louis Bhim & Reiichiro Kawai, 2018. "Smooth Upper Bounds For The Price Function Of American Style Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(01), pages 1-38, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:230:y:2025:i:c:p:501-516. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.