IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v229y2025icp235-245.html
   My bibliography  Save this article

Dynamic analysis of Hashimoto’s Thyroiditis bio-mathematical model using artificial neural network

Author

Listed:
  • Kumar, Rakesh
  • Dhua, Sudarshan

Abstract

This article establishes an efficient solution scheme for a mathematical model of Hashimoto’s Thyroiditis (HT) employing artificial neural networks. HT is an auto-immune disorder hostile to the thyroid follicle cells, effectuating hypothyroid or hyperthyroidism. Under this condition, the thyroid-stimulating hormone (TSH) alters incomparably to the free thyroxine (FT4) interrupts the functioning of the hypothalamus-pituitary-thyroid (HPT) axis, implicating the thyroid follicle cells getting destroyed. We primarily focus on utilizing artificial neural network (ANN) to perform numerical simulations for the system of ordinary differential equations describing the dynamics of an existing 4D model of HT. The presented model comprises four time-dependent variables: TSH, FT4, anti-thyroid antibodies (Ab), and size of the thyroid gland (T). We utilize ND-Solver and ANN scheme in the Mathematica software to acquire the computational data and illustrate thus retrieved results with essential performance plots. Further, mean square error has been considered in validating the proposed ANN-based approach accurately. The plot for training and validation loss exhibits the effectiveness of the proposed methodology, and substantiate that the suggested ANN approach is a good fit for the solving the mathematical model of HT.

Suggested Citation

  • Kumar, Rakesh & Dhua, Sudarshan, 2025. "Dynamic analysis of Hashimoto’s Thyroiditis bio-mathematical model using artificial neural network," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 229(C), pages 235-245.
  • Handle: RePEc:eee:matcom:v:229:y:2025:i:c:p:235-245
    DOI: 10.1016/j.matcom.2024.10.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475424003902
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2024.10.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gandomi, Amir & Haider, Murtaza, 2015. "Beyond the hype: Big data concepts, methods, and analytics," International Journal of Information Management, Elsevier, vol. 35(2), pages 137-144.
    2. F. A. Rihan & M. Safan & M. A. Abdeen & D. Abdel Rahman, 2012. "Qualitative and Computational Analysis of a Mathematical Model for Tumor‐Immune Interactions," Journal of Applied Mathematics, John Wiley & Sons, vol. 2012(1).
    3. F. A. Rihan & M. Safan & M. A. Abdeen & D. Abdel Rahman, 2012. "Qualitative and Computational Analysis of a Mathematical Model for Tumor-Immune Interactions," Journal of Applied Mathematics, Hindawi, vol. 2012, pages 1-19, February.
    4. Justin Sirignano & Konstantinos Spiliopoulos, 2017. "DGM: A deep learning algorithm for solving partial differential equations," Papers 1708.07469, arXiv.org, revised Sep 2018.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julia Eichholz & Thorsten Knauer & Sandra Winkelmann, 2023. "Digital Maturity of Forecasting and its Impact in Times of Crisis," Schmalenbach Journal of Business Research, Springer, vol. 75(4), pages 443-481, December.
    2. de Camargo Fiorini, Paula & Roman Pais Seles, Bruno Michel & Chiappetta Jabbour, Charbel Jose & Barberio Mariano, Enzo & de Sousa Jabbour, Ana Beatriz Lopes, 2018. "Management theory and big data literature: From a review to a research agenda," International Journal of Information Management, Elsevier, vol. 43(C), pages 112-129.
    3. William Lefebvre & Enzo Miller, 2021. "Linear-quadratic stochastic delayed control and deep learning resolution," Working Papers hal-03145949, HAL.
    4. Amiri, Babak & Karimianghadim, Ramin, 2024. "A novel text clustering model based on topic modelling and social network analysis," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    5. A. Max Reppen & H. Mete Soner & Valentin Tissot-Daguette, 2022. "Deep Stochastic Optimization in Finance," Papers 2205.04604, arXiv.org.
    6. Adesuwa Omorede & Juan Francisco Prados-Castillo & Amalia Cristina Casas-Jurado, 2025. "Researching entrepreneurship using big data: implementation, benefits, and challenges," International Entrepreneurship and Management Journal, Springer, vol. 21(1), pages 1-22, December.
    7. Sebastian Jaimungal, 2022. "Reinforcement learning and stochastic optimisation," Finance and Stochastics, Springer, vol. 26(1), pages 103-129, January.
    8. Acharya, Abhilash & Singh, Sanjay Kumar & Pereira, Vijay & Singh, Poonam, 2018. "Big data, knowledge co-creation and decision making in fashion industry," International Journal of Information Management, Elsevier, vol. 42(C), pages 90-101.
    9. Harkaran Kava & Konstantina Spanaki & Thanos Papadopoulos & Stella Despoudi & Oscar Rodriguez-Espindola & Masoud Fakhimi, 2021. "Data Analytics Diffusion in the UK Renewable Energy Sector: An Innovation Perspective," Post-Print hal-03781046, HAL.
    10. Oesterreich, Thuy Duong & Anton, Eduard & Teuteberg, Frank & Dwivedi, Yogesh K, 2022. "The role of the social and technical factors in creating business value from big data analytics: A meta-analysis," Journal of Business Research, Elsevier, vol. 153(C), pages 128-149.
    11. Rong Du & Duy-Minh Dang, 2023. "Fourier Neural Network Approximation of Transition Densities in Finance," Papers 2309.03966, arXiv.org, revised Sep 2024.
    12. Gero Junike & Hauke Stier, 2024. "Enhancing Fourier pricing with machine learning," Papers 2412.05070, arXiv.org.
    13. Ali Al-Aradi & Adolfo Correia & Danilo de Frietas Naiff & Gabriel Jardim & Yuri Saporito, 2019. "Extensions of the Deep Galerkin Method," Papers 1912.01455, arXiv.org, revised Apr 2022.
    14. Johannes Habel & Sascha Alavi & Nicolas Heinitz, 2023. "A theory of predictive sales analytics adoption," AMS Review, Springer;Academy of Marketing Science, vol. 13(1), pages 34-54, June.
    15. Tiago Carneiro & Winnie Ng Picoto & Inês Pinto, 2023. "Big Data Analytics and Firm Performance in the Hotel Sector," Tourism and Hospitality, MDPI, vol. 4(2), pages 1-13, April.
    16. Weronika Jakubczak & Anna Golebiowska & Dariusz Prokopowicz, 2021. "The Legal and Security Aspects of ICT and Industry 4.0 Importance for Financial Industry 4.0 Development," European Research Studies Journal, European Research Studies Journal, vol. 0(4 - Part ), pages 169-181.
    17. Salah A. Faroughi & Ramin Soltanmohammadi & Pingki Datta & Seyed Kourosh Mahjour & Shirko Faroughi, 2023. "Physics-Informed Neural Networks with Periodic Activation Functions for Solute Transport in Heterogeneous Porous Media," Mathematics, MDPI, vol. 12(1), pages 1-23, December.
    18. Gianfranco Marotta & Phillipe Krahnhof & Cam-Duc Au, 2022. "A Critical Analysis of Budgeting Processes from the Pharmaceutical Industry and Beyond," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 12(3), pages 1-3.
    19. Jiequn Han & Ruimeng Hu & Jihao Long, 2020. "Convergence of Deep Fictitious Play for Stochastic Differential Games," Papers 2008.05519, arXiv.org, revised Mar 2021.
    20. Dan Zhang & Loo G. Pee & Shan L. Pan & Jingyuan Wang, 2024. "Information practices in data analytics for supporting public health surveillance," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 75(1), pages 79-93, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:229:y:2025:i:c:p:235-245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.