IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v121y2024ics0966692324002436.html
   My bibliography  Save this article

Exploring fatal/severe pedestrian injury crash frequency at school zone crash hotspots: using interpretable machine learning to assess the micro-level street environment

Author

Listed:
  • Zhang, Kaihan
  • Tamakloe, Reuben
  • Cao, Mengqiu
  • Kim, Inhi

Abstract

Several countries have implemented designated school zones and installed traffic calming measures to enhance the safety of vulnerable pedestrians near schools. While macro-level built environment attributes (e.g., land use) have been widely acknowledged in relation to the role they play in urban traffic safety, the effects of micro-level streetscape characteristics on crash frequency have not been investigated to any significant extent. Moreover, the associations between these environmental features and crashes in school zones remains largely unknown. To address this issue, we first identified school zone-related crash hotspot using spatiotemporal hotspot mining on a comprehensive dataset of 20,484 pedestrian-vehicle crashes between 2017 and 2021 in Seoul, South Korea. Streetscape characteristics were analysed using street view imagery and advanced computer vision techniques to extract and classify pixel-wise visual elements. Preliminary findings reveal spatiotemporal variations in fatal and severe injury (FSI) crashes, with school zones in central commercial and industrial areas emerging as persistent crash hotspots that have remained statistically significant hotspots for 90 % of the study period. Further impact analysis using interpretable machine learning helped to uncover the non-linear relationships between both micro and macro environmental features and FSI frequency. Lower levels of street enclosure and walkability were associated with a higher frequency of FSI crashes, while increased openness and imageability were also correlated with more FSI incidents. Additionally, street greenery was found to reduce FSI crashes once it reached a certain threshold. Our findings extend existing knowledge of how the built environment and streetscape design influence pedestrian safety in school zones, paving the way for more targeted interventions to plan safer pedestrian environments around schools.

Suggested Citation

  • Zhang, Kaihan & Tamakloe, Reuben & Cao, Mengqiu & Kim, Inhi, 2024. "Exploring fatal/severe pedestrian injury crash frequency at school zone crash hotspots: using interpretable machine learning to assess the micro-level street environment," Journal of Transport Geography, Elsevier, vol. 121(C).
  • Handle: RePEc:eee:jotrge:v:121:y:2024:i:c:s0966692324002436
    DOI: 10.1016/j.jtrangeo.2024.104034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692324002436
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2024.104034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shaohua Wang & Yanyan Chen & Jianling Huang & Ning Chen & Yao Lu, 2019. "Macrolevel Traffic Crash Analysis: A Spatial Econometric Model Approach," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-10, May.
    2. Reuben Tamakloe & D. Park, 2023. "Factors influencing fatal vehicle-involved crash consequence metrics at spatio-temporal hotspots in South Korea: application of GIS and machine learning techniques," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 27(3), pages 483-517, July.
    3. Yang, Linchuan & Ao, Yibin & Ke, Jintao & Lu, Yi & Liang, Yuan, 2021. "To walk or not to walk? Examining non-linear effects of streetscape greenery on walking propensity of older adults," Journal of Transport Geography, Elsevier, vol. 94(C).
    4. Yang, Hongtai & Zheng, Rong & Li, Xuan & Huo, Jinghai & Yang, Linchuan & Zhu, Tong, 2022. "Nonlinear and threshold effects of the built environment on e-scooter sharing ridership," Journal of Transport Geography, Elsevier, vol. 104(C).
    5. Behram Wali & Asad Khattak, 2020. "Harnessing Ambient Sensing & Naturalistic Driving Systems to Understand Links Between Driving Volatility and Crash Propensity in School Zones: A generalized hierarchical mixed logit framework," Papers 2010.12017, arXiv.org.
    6. Wu, Fangning & Li, Wenjing & Qiu, Waishan, 2023. "Examining non-linear relationship between streetscape features and propensity of walking to school in Hong Kong using machine learning techniques," Journal of Transport Geography, Elsevier, vol. 113(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Hongtai & Luo, Peng & Li, Chaojing & Zhai, Guocong & Yeh, Anthony G.O., 2023. "Nonlinear effects of fare discounts and built environment on ridesplitting adoption rates," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    2. Liu, Jixiang & Xiao, Longzhu, 2023. "Non-linear relationships between built environment and commuting duration of migrants and locals," Journal of Transport Geography, Elsevier, vol. 106(C).
    3. Sun, Yite & Liu, Xiaobing & Wang, Rui & Wang, Yun & Yan, Xuedong, 2025. "Nonlinear effects of built environment on ridesplitting ratio: Discrepancies across sharing motivations," Journal of Transport Geography, Elsevier, vol. 126(C).
    4. Jinkun Yang & Linchuan Yang & Haitao Ma, 2022. "Community Participation Strategy for Sustainable Urban Regeneration in Xiamen, China," Land, MDPI, vol. 11(5), pages 1-14, April.
    5. Zha, Donglan & Yang, Guanglei & Wang, Wenzhong & Wang, Qunwei & Zhou, Dequn, 2020. "Appliance energy labels and consumer heterogeneity: A latent class approach based on a discrete choice experiment in China," Energy Economics, Elsevier, vol. 90(C).
    6. Cao, Jason & Tao, Tao, 2025. "Can an identified environmental correlate of car ownership serve as a practical planning tool?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 191(C).
    7. Tong, Zhaomin & Zhang, Ziyi & An, Rui & Liu, Yaolin & Chen, Huiting & Xu, Jiwei & Fu, Shihang, 2024. "Detecting anomalous commuting patterns: Mismatch between urban land attractiveness and commuting activities," Journal of Transport Geography, Elsevier, vol. 116(C).
    8. Jin, Scarlett T. & Sui, Daniel Z., 2024. "A comparative analysis of the spatial determinants of e-bike and e-scooter sharing link flows," Journal of Transport Geography, Elsevier, vol. 119(C).
    9. Yang, Yongjiang & Sasaki, Kuniaki & Cheng, Long & Tao, Sui, 2022. "Does the built environment matter for active travel among older adults: Insights from Chiba City, Japan," Journal of Transport Geography, Elsevier, vol. 101(C).
    10. Baohua Wei & Ziqi Cui & Qilin Wu & Sitong Guo & Wenjing Li & Xinyue Wang & Waishan Qiu, 2025. "Investigating the spatiotemporally heterogeneous effects of macro and micro built environment on sexual violence against women: A case study of Mumbai," Palgrave Communications, Palgrave Macmillan, vol. 12(1), pages 1-17, December.
    11. Yang, Hongtai & Zhai, Guocong & Liu, Xiaohan & Yang, Linchuan & Liu, Yugang & Yuan, Quan, 2022. "Determinants of city-level private car ownership: Effect of vehicle regulation policies and the relative price," Transport Policy, Elsevier, vol. 115(C), pages 40-48.
    12. He, Xuan & He, Sylvia Y., 2025. "How does the effect of walkability on walking behavior vary with the time of day? A study of Shenzhen, China," Journal of Transport Geography, Elsevier, vol. 126(C).
    13. Peng, Yisheng & Liu, Jiahui & Li, Fangyou & Cui, Jianqiang & Lu, Yi & Yang, Linchuan, 2024. "Resilience of ride-hailing services in response to air pollution and its association with built-environment and socioeconomic characteristics," Journal of Transport Geography, Elsevier, vol. 120(C).
    14. Sun, Shan & Guo, Liang & Yang, Shuo & Cao, Jason, 2024. "Exploring the contributions of Ebike ownership, transit access, and the built environment to car ownership in a developing city," Journal of Transport Geography, Elsevier, vol. 116(C).
    15. Ma, Xinwei & Tian, Xiaolin & Jin, Zejin & Cui, Hongjun & Ji, Yanjie & Cheng, Long, 2024. "Evaluation and determinants of metro users' regularity: Insights from transit one-card data," Journal of Transport Geography, Elsevier, vol. 118(C).
    16. Zhang, Yantang & Hu, Xiaowei & Wang, Hui & An, Shi, 2024. "How does the built environment affect the usage efficiency of dockless-shared bicycle? An exploration of time-varying nonlinear relationships," Journal of Transport Geography, Elsevier, vol. 118(C).
    17. Yin, Chun & Cao, Jason & Sun, Bindong & Liu, Jiahang, 2023. "Exploring built environment correlates of walking for different purposes: Evidence for substitution," Journal of Transport Geography, Elsevier, vol. 106(C).
    18. Wu, Fangning & Li, Wenjing & Qiu, Waishan, 2023. "Examining non-linear relationship between streetscape features and propensity of walking to school in Hong Kong using machine learning techniques," Journal of Transport Geography, Elsevier, vol. 113(C).
    19. Tao, Tao & Cao, Jason, 2024. "Ineffective built environment interventions: How to reduce driving in American suburbs?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    20. Quan, Steven Jige & Xue, Yang & Li, Chaosu, 2025. "Nonlinearity in the relationships between urban form and residential energy use intensity," Applied Energy, Elsevier, vol. 383(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:121:y:2024:i:c:s0966692324002436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.