IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v110y2022ics0305048322000482.html
   My bibliography  Save this article

Intruder detection and interdiction modeling: A bilevel programming approach for ballistic missile defense asset location

Author

Listed:
  • Haywood, Adam B.
  • Lunday, Brian J.
  • Robbins, Matthew J.

Abstract

A relevant, applied problem in the location analysis literature is the effective location and allocation of resources to detect and interdict intruders traversing a defended region. For selected applications, defender resources are designed to detect and/or interdict intruders on specific parts (or stages) of the respective paths. Within this context, this research is motivated by the problem of effectively defending a set of population centers against attack by a limited number of intercontinental ballistic missiles (i.e., intruders). Herein, the defensive actions entail the location of ballistic missile defense resources to detect and interdict missiles over a range of possible launch-to-target missile paths and their respective, spatio-temporally defined stages of flight. Assumed is an adversary capability to observe the defensive asset locations and respond with an intercontinental ballistic missile targeting strategy that maximizes the expected damage of an attack. The research presents a bilevel programming model for the corresponding Stackelberg game and, via transformations and reformulations, identifies a single-objective mixed-integer nonlinear program that can be addressed with any of several commercially available solvers. Upon proving the convexity of the resulting formulation to assure reported solutions are globally optimal, comparative testing identifies the commercial solver ANTIGONE as preferred for solving instances of the underlying problem. Empirical testing via a designed experiment examines which scenario features of the underlying problem are most significant for predicting the required computational effort to solve problem instances, yielding insight into the practical nature of this research to address instances of increasing size.

Suggested Citation

  • Haywood, Adam B. & Lunday, Brian J. & Robbins, Matthew J., 2022. "Intruder detection and interdiction modeling: A bilevel programming approach for ballistic missile defense asset location," Omega, Elsevier, vol. 110(C).
  • Handle: RePEc:eee:jomega:v:110:y:2022:i:c:s0305048322000482
    DOI: 10.1016/j.omega.2022.102640
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048322000482
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2022.102640?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicholas T. Boardman & Brian J. Lunday & Matthew J. Robbins, 2017. "Heterogeneous surface-to-air missile defense battery location: a game theoretic approach," Journal of Heuristics, Springer, vol. 23(6), pages 417-447, December.
    2. Scheiper, Barbara & Schiffer, Maximilian & Walther, Grit, 2019. "The flow refueling location problem with load flow control," Omega, Elsevier, vol. 83(C), pages 50-69.
    3. Gerald Brown & Matthew Carlyle & Douglas Diehl & Jeffrey Kline & Kevin Wood, 2005. "A Two-Sided Optimization for Theater Ballistic Missile Defense," Operations Research, INFORMS, vol. 53(5), pages 745-763, October.
    4. Gerald Brown & Matthew Carlyle & Javier Salmerón & Kevin Wood, 2006. "Defending Critical Infrastructure," Interfaces, INFORMS, vol. 36(6), pages 530-544, December.
    5. Chan Y. Han & Brian J. Lunday & Matthew J. Robbins, 2016. "A Game Theoretic Model for the Optimal Location of Integrated Air Defense System Missile Batteries," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 405-416, August.
    6. González-Díaz, Julio & González-Rodríguez, Brais & Leal, Marina & Puerto, Justo, 2021. "Global optimization for bilevel portfolio design: Economic insights from the Dow Jones index," Omega, Elsevier, vol. 102(C).
    7. Brian J. Lunday & Hanif D. Sherali & Theodore S. Glickman, 2010. "The Nested Event Tree Model with Application to Combating Terrorism," INFORMS Journal on Computing, INFORMS, vol. 22(4), pages 620-634, November.
    8. Eliş, Haluk & Tansel, Barbaros & Oğuz, Osman & Güney, Mesut & Kian, Ramez, 2021. "On guarding real terrains: The terrain guarding and the blocking path problems," Omega, Elsevier, vol. 102(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiang, Yin, 2023. "Minimizing the maximal reliable path with a nodal interdiction model considering resource sharing," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    2. Keskin, Burcu B. & Griffin, Emily C. & Prell, Jonathan O. & Dilkina, Bistra & Ferber, Aaron & MacDonald, John & Hilend, Rowan & Griffis, Stanley & Gore, Meredith L., 2023. "Quantitative Investigation of Wildlife Trafficking Supply Chains: A Review," Omega, Elsevier, vol. 115(C).
    3. Liu, Shaonan & Kong, Nan & Parikh, Pratik & Wang, Mingzheng, 2023. "Optimal trauma care network redesign with government subsidy: A bilevel integer programming approach," Omega, Elsevier, vol. 119(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan S. Borrero & Oleg A. Prokopyev & Denis Sauré, 2019. "Sequential Interdiction with Incomplete Information and Learning," Operations Research, INFORMS, vol. 67(1), pages 72-89, January.
    2. Colin P. Gillen & Alexander Veremyev & Oleg A. Prokopyev & Eduardo L. Pasiliao, 2021. "Fortification Against Cascade Propagation Under Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1481-1499, October.
    3. Hughes, Michael S. & Lunday, Brian J., 2022. "The Weapon Target Assignment Problem: Rational Inference of Adversary Target Utility Valuations from Observed Solutions," Omega, Elsevier, vol. 107(C).
    4. Peiqiu Guan & Jun Zhuang, 2015. "Modeling Public–Private Partnerships in Disaster Management via Centralized and Decentralized Models," Decision Analysis, INFORMS, vol. 12(4), pages 173-189, December.
    5. Leonardo Lozano & J. Cole Smith, 2017. "A Backward Sampling Framework for Interdiction Problems with Fortification," INFORMS Journal on Computing, INFORMS, vol. 29(1), pages 123-139, February.
    6. Bo An & Fernando Ordóñez & Milind Tambe & Eric Shieh & Rong Yang & Craig Baldwin & Joseph DiRenzo & Kathryn Moretti & Ben Maule & Garrett Meyer, 2013. "A Deployed Quantal Response-Based Patrol Planning System for the U.S. Coast Guard," Interfaces, INFORMS, vol. 43(5), pages 400-420, October.
    7. Nicholas T. Boardman & Brian J. Lunday & Matthew J. Robbins, 2017. "Heterogeneous surface-to-air missile defense battery location: a game theoretic approach," Journal of Heuristics, Springer, vol. 23(6), pages 417-447, December.
    8. David L. Alderson & Gerald G. Brown & W. Matthew Carlyle, 2015. "Operational Models of Infrastructure Resilience," Risk Analysis, John Wiley & Sons, vol. 35(4), pages 562-586, April.
    9. Bier, Vicki M. & Hausken, Kjell, 2013. "Defending and attacking a network of two arcs subject to traffic congestion," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 214-224.
    10. Akgün, Ibrahim & Tansel, Barbaros Ç. & Kevin Wood, R., 2011. "The multi-terminal maximum-flow network-interdiction problem," European Journal of Operational Research, Elsevier, vol. 211(2), pages 241-251, June.
    11. Chen Wang & Vicki M. Bier, 2016. "Quantifying Adversary Capabilities to Inform Defensive Resource Allocation," Risk Analysis, John Wiley & Sons, vol. 36(4), pages 756-775, April.
    12. Nikoofal, Mohammad E. & Zhuang, Jun, 2015. "On the value of exposure and secrecy of defense system: First-mover advantage vs. robustness," European Journal of Operational Research, Elsevier, vol. 246(1), pages 320-330.
    13. Zhang, Chi & Ramirez-Marquez, José Emmanuel & Wang, Jianhui, 2015. "Critical infrastructure protection using secrecy – A discrete simultaneous game," European Journal of Operational Research, Elsevier, vol. 242(1), pages 212-221.
    14. Xiaojun (Gene) Shan & Jun Zhuang, 2014. "Modeling Credible Retaliation Threats in Deterring the Smuggling of Nuclear Weapons Using Partial Inspection---A Three-Stage Game," Decision Analysis, INFORMS, vol. 11(1), pages 43-62, March.
    15. Chan Y. Han & Brian J. Lunday & Matthew J. Robbins, 2016. "A Game Theoretic Model for the Optimal Location of Integrated Air Defense System Missile Batteries," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 405-416, August.
    16. David Simchi-Levi & Nikolaos Trichakis & Peter Yun Zhang, 2019. "Designing Response Supply Chain Against Bioattacks," Operations Research, INFORMS, vol. 67(5), pages 1246-1268, September.
    17. Alexander Shiroky & Andrey Kalashnikov, 2021. "Mathematical Problems of Managing the Risks of Complex Systems under Targeted Attacks with Known Structures," Mathematics, MDPI, vol. 9(19), pages 1-11, October.
    18. Bravard, Christophe & Charroin, Liza & Touati, Corinne, 2017. "Optimal design and defense of networks under link attacks," Journal of Mathematical Economics, Elsevier, vol. 68(C), pages 62-79.
    19. Kjell Hausken & Jun Zhuang, 2011. "Governments' and Terrorists' Defense and Attack in a T -Period Game," Decision Analysis, INFORMS, vol. 8(1), pages 46-70, March.
    20. Marcos Costa Roboredo & Luiz Aizemberg & Artur Alves Pessoa, 2019. "An exact approach for the r-interdiction covering problem with fortification," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(1), pages 111-131, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:110:y:2022:i:c:s0305048322000482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.