IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v99y2008i6p1083-1104.html
   My bibliography  Save this article

Some properties of canonical correlations and variates in infinite dimensions

Author

Listed:
  • Cupidon, J.
  • Eubank, R.
  • Gilliam, D.
  • Ruymgaart, F.

Abstract

In this paper the notion of functional canonical correlation as a maximum of correlations of linear functionals is explored. It is shown that the population functional canonical correlation is in general well defined, but that it is a supremum rather than a maximum, so that a pair of canonical variates may not exist in the spaces considered. Also the relation with the maximum eigenvalue of an associated pair of operators and the corresponding eigenvectors is not in general valid. When the inverses of the operators involved are regularized, however, all of the above properties are restored. Relations between the actual population quantities and their regularized versions are also established. The sample functional canonical correlations can be regularized in a similar way, and consistency is shown at a fixed level of the regularization parameter.

Suggested Citation

  • Cupidon, J. & Eubank, R. & Gilliam, D. & Ruymgaart, F., 2008. "Some properties of canonical correlations and variates in infinite dimensions," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1083-1104, July.
  • Handle: RePEc:eee:jmvana:v:99:y:2008:i:6:p:1083-1104
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(07)00097-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vinod, H. D., 1976. "Canonical ridge and econometrics of joint production," Journal of Econometrics, Elsevier, vol. 4(2), pages 147-166, May.
    2. Ruymgaart, Frits H. & Yang, Song, 1997. "Some Applications of Watson's Perturbation Approach to Random Matrices," Journal of Multivariate Analysis, Elsevier, vol. 60(1), pages 48-60, January.
    3. Dauxois, J. & Pousse, A. & Romain, Y., 1982. "Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference," Journal of Multivariate Analysis, Elsevier, vol. 12(1), pages 136-154, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cho, Haeran & Goude, Yannig & Brossat, Xavier & Yao, Qiwei, 2013. "Modeling and forecasting daily electricity load curves: a hybrid approach," LSE Research Online Documents on Economics 49634, London School of Economics and Political Science, LSE Library.
    2. Alvarez, Agustín & Boente, Graciela & Kudraszow, Nadia, 2019. "Robust sieve estimators for functional canonical correlation analysis," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 46-62.
    3. Konrad Menzel, 2023. "Transfer Estimates for Causal Effects across Heterogeneous Sites," Papers 2305.01435, arXiv.org, revised May 2024.
    4. Zhou, Yang & Lin, Shu-Chin & Wang, Jane-Ling, 2018. "Local and global temporal correlations for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 1-14.
    5. Shin, Hyejin & Lee, Seokho, 2015. "Canonical correlation analysis for irregularly and sparsely observed functional data," Journal of Multivariate Analysis, Elsevier, vol. 134(C), pages 1-18.
    6. Zhu, Hanbing & Li, Rui & Zhang, Riquan & Lian, Heng, 2020. "Nonlinear functional canonical correlation analysis via distance covariance," Journal of Multivariate Analysis, Elsevier, vol. 180(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Munk, A. & Paige, R. & Pang, J. & Patrangenaru, V. & Ruymgaart, F., 2008. "The one- and multi-sample problem for functional data with application to projective shape analysis," Journal of Multivariate Analysis, Elsevier, vol. 99(5), pages 815-833, May.
    2. Mas, André, 2002. "Weak convergence for the covariance operators of a Hilbertian linear process," Stochastic Processes and their Applications, Elsevier, vol. 99(1), pages 117-135, May.
    3. repec:cte:wsrepe:ws1506 is not listed on IDEAS
    4. Takane, Yoshio & Yanai, Haruo & Hwang, Heungsun, 2006. "An improved method for generalized constrained canonical correlation analysis," Computational Statistics & Data Analysis, Elsevier, vol. 50(1), pages 221-241, January.
    5. María Edo & Walter Sosa Escudero & Marcela Svarc, 2021. "A multidimensional approach to measuring the middle class," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 19(1), pages 139-162, March.
    6. Guangxing Wang & Sisheng Liu & Fang Han & Chong‐Zhi Di, 2023. "Robust functional principal component analysis via a functional pairwise spatial sign operator," Biometrics, The International Biometric Society, vol. 79(2), pages 1239-1253, June.
    7. Qi, Xin & Zhao, Hongyu, 2011. "Some theoretical properties of Silverman's method for Smoothed functional principal component analysis," Journal of Multivariate Analysis, Elsevier, vol. 102(4), pages 741-767, April.
    8. Ci-Ren Jiang & John A. D. Aston & Jane-Ling Wang, 2016. "A Functional Approach to Deconvolve Dynamic Neuroimaging Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 1-13, March.
    9. Delsol, Laurent & Ferraty, Frédéric & Vieu, Philippe, 2011. "Structural test in regression on functional variables," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 422-447, March.
    10. repec:hum:wpaper:sfb649dp2005-016 is not listed on IDEAS
    11. Beran, Jan & Liu, Haiyan, 2016. "Estimation of eigenvalues, eigenvectors and scores in FDA models with dependent errors," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 218-233.
    12. Chung Chang & Yakuan Chen & R. Ogden, 2014. "Functional data classification: a wavelet approach," Computational Statistics, Springer, vol. 29(6), pages 1497-1513, December.
    13. Yuping Hu & Siyu Wu & Sanying Feng & Junliang Jin, 2020. "Estimation in Partial Functional Linear Spatial Autoregressive Model," Mathematics, MDPI, vol. 8(10), pages 1-12, October.
    14. Haixu Wang & Jiguo Cao, 2023. "Nonlinear prediction of functional time series," Environmetrics, John Wiley & Sons, Ltd., vol. 34(5), August.
    15. Ruggiero, John, 1998. "A new approach for technical efficiency estimation in multiple output production," European Journal of Operational Research, Elsevier, vol. 111(2), pages 369-380, December.
    16. Aguilera-Morillo, M. Carmen & Aguilera, Ana M. & Jiménez-Molinos, Francisco & Roldán, Juan B., 2019. "Stochastic modeling of Random Access Memories reset transitions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 159(C), pages 197-209.
    17. Lukáš Malec & Antonín Pavlícek & Jaroslav Poživil, 2014. "Studying Covariance and Variance Components in the Czech Regions Arrival Tourism Data," Acta Universitatis Danubius. OEconomica, Danubius University of Galati, issue 2(2), pages 109-128, April.
    18. Kraus, David, 2019. "Inferential procedures for partially observed functional data," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 583-603.
    19. Manteiga, Wenceslao Gonzalez & Vieu, Philippe, 2007. "Statistics for Functional Data," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4788-4792, June.
    20. Ana Aguilera & Francisco Ocaña & Mariano Valderrama, 1999. "Forecasting with unequally spaced data by a functional principal component approach," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 8(1), pages 233-253, June.
    21. Benatia, David & Carrasco, Marine & Florens, Jean-Pierre, 2017. "Functional linear regression with functional response," Journal of Econometrics, Elsevier, vol. 201(2), pages 269-291.
    22. Cees Diks & Bram Wouters, 2023. "Noise reduction for functional time series," Papers 2307.02154, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:99:y:2008:i:6:p:1083-1104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.