IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v98y2007i5p1051-1071.html
   My bibliography  Save this article

On nonparametric classification with missing covariates

Author

Listed:
  • Mojirsheibani, Majid
  • Montazeri, Zahra

Abstract

General procedures are proposed for nonparametric classification in the presence of missing covariates. Both kernel-based imputation as well as Horvitz-Thompson-type inverse weighting approaches are employed to handle the presence of missing covariates. In the case of imputation, it is a certain regression function which is being imputed (and not the missing values). Using the theory of empirical processes, the performance of the resulting classifiers is assessed by obtaining exponential bounds on the deviations of their conditional errors from that of the Bayes classifier. These bounds, in conjunction with the Borel-Cantelli lemma, immediately provide various strong consistency results.

Suggested Citation

  • Mojirsheibani, Majid & Montazeri, Zahra, 2007. "On nonparametric classification with missing covariates," Journal of Multivariate Analysis, Elsevier, vol. 98(5), pages 1051-1071, May.
  • Handle: RePEc:eee:jmvana:v:98:y:2007:i:5:p:1051-1071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(06)00136-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hazelton, Martin L., 2000. "Marginal density estimation from incomplete bivariate data," Statistics & Probability Letters, Elsevier, vol. 47(1), pages 75-84, March.
    2. Wang Q. & Linton O. & Hardle W., 2004. "Semiparametric Regression Analysis With Missing Response at Random," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 334-345, January.
    3. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Levon Demirdjian & Majid Mojirsheibani, 2019. "Kernel classification with missing data and the choice of smoothing parameters," Statistical Papers, Springer, vol. 60(5), pages 1487-1513, October.
    2. Majid Mojirsheibani & Timothy Reese, 2017. "Kernel regression estimation for incomplete data with applications," Statistical Papers, Springer, vol. 58(1), pages 185-209, March.
    3. Mariela Sued & Marina Valdora & Víctor Yohai, 2020. "Robust doubly protected estimators for quantiles with missing data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 819-843, September.
    4. Wang, Qihua & Su, Miaomiao & Wang, Ruoyu, 2021. "A beyond multiple robust approach for missing response problem," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    5. Bravo, Francesco & Escanciano, Juan Carlos & Van Keilegom, Ingrid, 2015. "Wilks' Phenomenon in Two-Step Semiparametric Empirical Likelihood Inference," LIDAM Discussion Papers ISBA 2015016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Xiaohong Chen & Han Hong & Alessandro Tarozzi, 2008. "Semiparametric Efficiency in GMM Models of Nonclassical Measurement Errors, Missing Data and Treatment Effects," Cowles Foundation Discussion Papers 1644, Cowles Foundation for Research in Economics, Yale University.
    7. Inkmann, J., 2005. "Inverse Probability Weighted Generalised Empirical Likelihood Estimators : Firm Size and R&D Revisited," Other publications TiSEM c39cff1f-16c1-4446-a83f-c, Tilburg University, School of Economics and Management.
    8. Xuewen Lu & Heng Lian & Wanrong Liu, 2012. "Semiparametric estimation for inverse density weighted expectations when responses are missing at random," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(1), pages 139-152.
    9. Shuanghua Luo & Cheng-yi Zhang, 2016. "Nonparametric $$M$$ M -type regression estimation under missing response data," Statistical Papers, Springer, vol. 57(3), pages 641-664, September.
    10. Majid Mojirsheibani & Zahra Montazeri, 2007. "Statistical classification with missing covariates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 839-857, November.
    11. Bryan S. Graham & Cristine Campos De Xavier Pinto & Daniel Egel, 2012. "Inverse Probability Tilting for Moment Condition Models with Missing Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(3), pages 1053-1079.
    12. Francesco Bravo & David Jacho-Chavez, 2011. "Empirical Likelihood for Efficient Semiparametric Average Treatment Effects," Econometric Reviews, Taylor & Francis Journals, vol. 30(1), pages 1-24.
    13. Francesco Bravo, 2013. "Partially linear varying coefficient models with missing at random responses," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(4), pages 721-762, August.
    14. Lu Li & Niwen Zhou & Lixing Zhu, 2022. "Outcome regression-based estimation of conditional average treatment effect," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(5), pages 987-1041, October.
    15. Ana M. Bianco & Graciela Boente & Wenceslao González-Manteiga & Ana Pérez-González, 2019. "Plug-in marginal estimation under a general regression model with missing responses and covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 106-146, March.
    16. Guo, Xu & Fang, Yun & Zhu, Xuehu & Xu, Wangli & Zhu, Lixing, 2018. "Semiparametric double robust and efficient estimation for mean functionals with response missing at random," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 325-339.
    17. van de Walle, Dominique & Mu, Ren, 2007. "Fungibility and the flypaper effect of project aid: Micro-evidence for Vietnam," Journal of Development Economics, Elsevier, vol. 84(2), pages 667-685, November.
    18. de Brauw, Alan & Gilligan, Daniel O. & Hoddinott, John & Roy, Shalini, 2014. "The Impact of Bolsa Família on Women’s Decision-Making Power," World Development, Elsevier, vol. 59(C), pages 487-504.
    19. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    20. Matias Busso & Patrick Kline, 2008. "Do Local Economic Development Programs Work? Evidence from the Federal Empowerment Zone Program," Cowles Foundation Discussion Papers 1639, Cowles Foundation for Research in Economics, Yale University.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:98:y:2007:i:5:p:1051-1071. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.