IDEAS home Printed from
   My bibliography  Save this article

On nonparametric classification with missing covariates


  • Mojirsheibani, Majid
  • Montazeri, Zahra


General procedures are proposed for nonparametric classification in the presence of missing covariates. Both kernel-based imputation as well as Horvitz-Thompson-type inverse weighting approaches are employed to handle the presence of missing covariates. In the case of imputation, it is a certain regression function which is being imputed (and not the missing values). Using the theory of empirical processes, the performance of the resulting classifiers is assessed by obtaining exponential bounds on the deviations of their conditional errors from that of the Bayes classifier. These bounds, in conjunction with the Borel-Cantelli lemma, immediately provide various strong consistency results.

Suggested Citation

  • Mojirsheibani, Majid & Montazeri, Zahra, 2007. "On nonparametric classification with missing covariates," Journal of Multivariate Analysis, Elsevier, vol. 98(5), pages 1051-1071, May.
  • Handle: RePEc:eee:jmvana:v:98:y:2007:i:5:p:1051-1071

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Hazelton, Martin L., 2000. "Marginal density estimation from incomplete bivariate data," Statistics & Probability Letters, Elsevier, vol. 47(1), pages 75-84, March.
    2. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    3. Wang Q. & Linton O. & Hardle W., 2004. "Semiparametric Regression Analysis With Missing Response at Random," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 334-345, January.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:98:y:2007:i:5:p:1051-1071. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.