IDEAS home Printed from
   My bibliography  Save this article

Mean Location and Sample Mean Location on Manifolds: Asymptotics, Tests, Confidence Regions


  • Hendriks, Harrie
  • Landsman, Zinoviy


In a previous investigation we studied some asymptotic properties of the sample mean location on submanifolds of Euclidean space. The sample mean location generalizes least squares statistics to smooth compact submanifolds of Euclidean space. In this paper these properties are put into use. Tests for hypotheses about mean location are constructed and confidence regions for mean location are indicated. We study the asymptotic distribution of the test statistic. The problem of comparing mean locations for two samples is analyzed. Special attention is paid to observations on Stiefel manifolds including the orthogonal groupO(p) and spheresSk-1, and special orthogonal groupsSO(p). The results also are illustrated with our experience with simulations.

Suggested Citation

  • Hendriks, Harrie & Landsman, Zinoviy, 1998. "Mean Location and Sample Mean Location on Manifolds: Asymptotics, Tests, Confidence Regions," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 227-243, November.
  • Handle: RePEc:eee:jmvana:v:67:y:1998:i:2:p:227-243

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Hendriks, Harrie & Landsman, Zinoviy & Ruymgaart, Frits, 1996. "Asymptotic Behavior of Sample Mean Direction for Spheres," Journal of Multivariate Analysis, Elsevier, vol. 59(2), pages 141-152, November.
    2. Chikuse, Yasuko, 1990. "The matrix angular central Gaussian distribution," Journal of Multivariate Analysis, Elsevier, vol. 33(2), pages 265-274, May.
    3. Mardia, K. V. & Khatri, C. G., 1977. "Uniform distribution on a Stiefel manifold," Journal of Multivariate Analysis, Elsevier, vol. 7(3), pages 468-473, September.
    4. Hendriks, Harrie & Landsman, Zinoviy, 1996. "Asymptotic behavior of sample mean location for manifolds," Statistics & Probability Letters, Elsevier, vol. 26(2), pages 169-178, February.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Huckemann, Stephan & Hotz, Thomas, 2009. "Principal component geodesics for planar shape spaces," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 699-714, April.
    2. Crane, M. & Patrangenaru, V., 2011. "Random change on a Lie group and mean glaucomatous projective shape change detection from stereo pair images," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 225-237, February.
    3. H. Fotouhi & M. Golalizadeh, 2015. "Highly resistant gradient descent algorithm for computing intrinsic mean shape on similarity shape spaces," Statistical Papers, Springer, vol. 56(2), pages 391-410, May.
    4. Osborne, Daniel & Patrangenaru, Vic & Ellingson, Leif & Groisser, David & Schwartzman, Armin, 2013. "Nonparametric two-sample tests on homogeneous Riemannian manifolds, Cholesky decompositions and Diffusion Tensor Image analysis," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 163-175.
    5. Stephan Huckemann, 2012. "On the meaning of mean shape: manifold stability, locus and the two sample test," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(6), pages 1227-1259, December.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:67:y:1998:i:2:p:227-243. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.