IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v63y1997i2p296-312.html
   My bibliography  Save this article

ML Estimation of the MultivariatetDistribution and the EM Algorithm

Author

Listed:
  • Liu, Chuanhai

Abstract

Maximum likelihood estimation of the multivariatetdistribution, especially with unknown degrees of freedom, has been an interesting topic in the development of the EM algorithm. After a brief review of the EM algorithm and its application to finding the maximum likelihood estimates of the parameters of thetdistribution, this paper provides new versions of the ECME algorithm for maximum likelihood estimation of the multivariatetdistribution from data with possibly missing values. The results show that the new versions of the ECME algorithm converge faster than the previous procedures. Most important, the idea of this new implementation is quite general and useful for the development of the EM algorithm. Comparisons of different methods based on two datasets are presented.

Suggested Citation

  • Liu, Chuanhai, 1997. "ML Estimation of the MultivariatetDistribution and the EM Algorithm," Journal of Multivariate Analysis, Elsevier, vol. 63(2), pages 296-312, November.
  • Handle: RePEc:eee:jmvana:v:63:y:1997:i:2:p:296-312
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(97)91703-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roderick J. A. Little, 1988. "Robust Estimation of the Mean and Covariance Matrix from Data with Missing Values," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 37(1), pages 23-38, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Uchenna Chinedu Nduka, 2022. "Efficient and robust estimation for autoregressive regression models using shape mixtures of skewt normal distribution," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1519-1551, September.
    2. Yuan, Ke-Hai & Savalei, Victoria, 2014. "Consistency, bias and efficiency of the normal-distribution-based MLE: The role of auxiliary variables," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 353-370.
    3. Ke-Hai Yuan & Wai Chan & Yubin Tian, 2016. "Expectation-robust algorithm and estimating equations for means and dispersion matrix with missing data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(2), pages 329-351, April.
    4. Tian, Guo-Liang & Ng, Kai Wang & Tan, Ming, 2008. "EM-type algorithms for computing restricted MLEs in multivariate normal distributions and multivariate t-distributions," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4768-4778, June.
    5. Jie Jiang & Xinsheng Liu & Keming Yu, 2013. "Maximum likelihood estimation of multinomial probit factor analysis models for multivariate t-distribution," Computational Statistics, Springer, vol. 28(4), pages 1485-1500, August.
    6. Yuan, Ke-Hai, 2009. "Normal distribution based pseudo ML for missing data: With applications to mean and covariance structure analysis," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 1900-1918, October.
    7. Wang, Xiao, 2010. "Wiener processes with random effects for degradation data," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 340-351, February.
    8. Ke-Hai Yuan & Zhiyong Zhang, 2012. "Robust Structural Equation Modeling with Missing Data and Auxiliary Variables," Psychometrika, Springer;The Psychometric Society, vol. 77(4), pages 803-826, October.
    9. Chen, Tao & Martin, Elaine & Montague, Gary, 2009. "Robust probabilistic PCA with missing data and contribution analysis for outlier detection," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3706-3716, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Y. Fong & J. Wakefield & S. De Rosa & N. Frahm, 2012. "A Robust Bayesian Random Effects Model for Nonlinear Calibration Problems," Biometrics, The International Biometric Society, vol. 68(4), pages 1103-1112, December.
    2. Frahm, Gabriel & Jaekel, Uwe, 2010. "A generalization of Tyler's M-estimators to the case of incomplete data," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 374-393, February.
    3. Osorio, Felipe & Paula, Gilberto A. & Galea, Manuel, 2007. "Assessment of local influence in elliptical linear models with longitudinal structure," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4354-4368, May.
    4. Kilic, Talip & Zezza, Alberto & Carletto, Calogero & Savastano, Sara, 2017. "Missing(ness) in Action: Selectivity Bias in GPS-Based Land Area Measurements," World Development, Elsevier, vol. 92(C), pages 143-157.
    5. Bello, A. L., 1995. "Imputation techniques in regression analysis: Looking closely at their implementation," Computational Statistics & Data Analysis, Elsevier, vol. 20(1), pages 45-57, July.
    6. Tian, Guo-Liang & Ng, Kai Wang & Tan, Ming, 2008. "EM-type algorithms for computing restricted MLEs in multivariate normal distributions and multivariate t-distributions," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4768-4778, June.
    7. Ke-Hai Yuan & Wai Chan & Yubin Tian, 2016. "Expectation-robust algorithm and estimating equations for means and dispersion matrix with missing data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(2), pages 329-351, April.
    8. Gregory Imholte & Raphael Gottardo, 2016. "Bayesian hierarchical modeling for subject‐level response classification in peptide microarray immunoassays," Biometrics, The International Biometric Society, vol. 72(4), pages 1206-1215, December.
    9. Bosco, Bruno & Parisio, Lucia & Pelagatti, Matteo & Baldi, Fabio, 2007. "A Robust Multivariate Long Run Analysis of European Electricity Prices," International Energy Markets Working Papers 7438, Fondazione Eni Enrico Mattei (FEEM).
    10. Sik-Yum Lee & Ye-Mao Xia, 2006. "Maximum Likelihood Methods in Treating Outliers and Symmetrically Heavy-Tailed Distributions for Nonlinear Structural Equation Models with Missing Data," Psychometrika, Springer;The Psychometric Society, vol. 71(3), pages 565-585, September.
    11. Sik-Yum Lee & Ye-Mao Xia, 2008. "A Robust Bayesian Approach for Structural Equation Models with Missing Data," Psychometrika, Springer;The Psychometric Society, vol. 73(3), pages 343-364, September.
    12. Frahm, Gabriel & Nordhausen, Klaus & Oja, Hannu, 2020. "M-estimation with incomplete and dependent multivariate data," Journal of Multivariate Analysis, Elsevier, vol. 176(C).
    13. Yuan, Ke-Hai, 2009. "Normal distribution based pseudo ML for missing data: With applications to mean and covariance structure analysis," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 1900-1918, October.
    14. Bruno Bosco & Lucia Parisio & Matteo Pelagatti & Fabio Baldi, 2010. "Long-run relations in european electricity prices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(5), pages 805-832.
    15. Luz Marina Rondon & Heleno Bolfarine, 2016. "Bayesian analysis of generalized elliptical semi-parametric models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(8), pages 1508-1524, June.
    16. V. Lachos & T. Angolini & C. Abanto-Valle, 2011. "On estimation and local influence analysis for measurement errors models under heavy-tailed distributions," Statistical Papers, Springer, vol. 52(3), pages 567-590, August.
    17. Yuan, Ke-Hai & Savalei, Victoria, 2014. "Consistency, bias and efficiency of the normal-distribution-based MLE: The role of auxiliary variables," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 353-370.
    18. Hosseini, Mojtaba & Brege, Staffan & Nord, Tomas, 2018. "A combined focused industry and company size investigation of the internationalization-performance relationship: The case of small and medium-sized enterprises (SMEs) within the Swedish wood manufactu," Forest Policy and Economics, Elsevier, vol. 97(C), pages 110-121.
    19. Angelo Mazza & Antonio Punzo, 2020. "Mixtures of multivariate contaminated normal regression models," Statistical Papers, Springer, vol. 61(2), pages 787-822, April.
    20. Serneels, Sven & Verdonck, Tim, 2008. "Principal component analysis for data containing outliers and missing elements," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1712-1727, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:63:y:1997:i:2:p:296-312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.