IDEAS home Printed from
   My bibliography  Save this article

ML Estimation of the MultivariatetDistribution and the EM Algorithm


  • Liu, Chuanhai


Maximum likelihood estimation of the multivariatetdistribution, especially with unknown degrees of freedom, has been an interesting topic in the development of the EM algorithm. After a brief review of the EM algorithm and its application to finding the maximum likelihood estimates of the parameters of thetdistribution, this paper provides new versions of the ECME algorithm for maximum likelihood estimation of the multivariatetdistribution from data with possibly missing values. The results show that the new versions of the ECME algorithm converge faster than the previous procedures. Most important, the idea of this new implementation is quite general and useful for the development of the EM algorithm. Comparisons of different methods based on two datasets are presented.

Suggested Citation

  • Liu, Chuanhai, 1997. "ML Estimation of the MultivariatetDistribution and the EM Algorithm," Journal of Multivariate Analysis, Elsevier, vol. 63(2), pages 296-312, November.
  • Handle: RePEc:eee:jmvana:v:63:y:1997:i:2:p:296-312

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Jie Jiang & Xinsheng Liu & Keming Yu, 2013. "Maximum likelihood estimation of multinomial probit factor analysis models for multivariate t-distribution," Computational Statistics, Springer, vol. 28(4), pages 1485-1500, August.
    2. Yuan, Ke-Hai, 2009. "Normal distribution based pseudo ML for missing data: With applications to mean and covariance structure analysis," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 1900-1918, October.
    3. Wang, Xiao, 2010. "Wiener processes with random effects for degradation data," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 340-351, February.
    4. Ke-Hai Yuan & Zhiyong Zhang, 2012. "Robust Structural Equation Modeling with Missing Data and Auxiliary Variables," Psychometrika, Springer;The Psychometric Society, vol. 77(4), pages 803-826, October.
    5. Chen, Tao & Martin, Elaine & Montague, Gary, 2009. "Robust probabilistic PCA with missing data and contribution analysis for outlier detection," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3706-3716, August.
    6. Yuan, Ke-Hai & Savalei, Victoria, 2014. "Consistency, bias and efficiency of the normal-distribution-based MLE: The role of auxiliary variables," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 353-370.
    7. Tian, Guo-Liang & Ng, Kai Wang & Tan, Ming, 2008. "EM-type algorithms for computing restricted MLEs in multivariate normal distributions and multivariate t-distributions," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4768-4778, June.
    8. Ke-Hai Yuan & Wai Chan & Yubin Tian, 2016. "Expectation-robust algorithm and estimating equations for means and dispersion matrix with missing data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(2), pages 329-351, April.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:63:y:1997:i:2:p:296-312. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.