IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v202y2024ics0047259x2400023x.html
   My bibliography  Save this article

Sparse online regression algorithm with insensitive loss functions

Author

Listed:
  • Hu, Ting
  • Xiong, Jing

Abstract

Online learning is an efficient approach in machine learning and statistics, which iteratively updates models upon the observation of a sequence of training examples. A representative online learning algorithm is the online gradient descent, which has found wide applications due to its low complexity and scalability to large datasets. Kernel-based learning methods have been proven to be quite successful in dealing with nonlinearity in the data and multivariate optimization. In this paper we present a class of kernel-based online gradient descent algorithm for addressing regression problems, which generates sparse estimators in an iterative way to reduce the algorithmic complexity for training streaming datasets and model selection in large-scale learning scenarios. In the setting of support vector regression (SVR), we design the sparse online learning algorithm by introducing a sequence of insensitive distance-based loss functions. We prove consistency and error bounds quantifying the generalization performance of such algorithms under mild conditions. The theoretical results demonstrate the interplay between statistical accuracy and sparsity property during learning processes. We show that the insensitive parameter plays a crucial role in providing sparsity as well as fast convergence rates. The numerical experiments also support our theoretical results.

Suggested Citation

  • Hu, Ting & Xiong, Jing, 2024. "Sparse online regression algorithm with insensitive loss functions," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
  • Handle: RePEc:eee:jmvana:v:202:y:2024:i:c:s0047259x2400023x
    DOI: 10.1016/j.jmva.2024.105316
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X2400023X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2024.105316?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:202:y:2024:i:c:s0047259x2400023x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.