Covariance function versus covariance matrix estimation in efficient semi-parametric regression for longitudinal data analysis
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jmva.2021.104900
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Adam J. Rothman, 2012. "Positive definite estimators of large covariance matrices," Biometrika, Biometrika Trust, vol. 99(3), pages 733-740.
- Fan, Jianqing & Huang, Tao & Li, Runze, 2007. "Analysis of Longitudinal Data With Semiparametric Estimation of Covariance Function," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 632-641, June.
- Wei Biao Wu, 2003. "Nonparametric estimation of large covariance matrices of longitudinal data," Biometrika, Biometrika Trust, vol. 90(4), pages 831-844, December.
- Naisyin Wang & Raymond J. Carroll & Xihong Lin, 2005. "Efficient Semiparametric Marginal Estimation for Longitudinal/Clustered Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 147-157, March.
- Jianxin Pan, 2003. "On modelling mean-covariance structures in longitudinal studies," Biometrika, Biometrika Trust, vol. 90(1), pages 239-244, March.
- Fan, Jianqing & Wu, Yichao, 2008. "Semiparametric Estimation of Covariance Matrixes for Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1520-1533.
- Yehua Li, 2011. "Efficient semiparametric regression for longitudinal data with nonparametric covariance estimation," Biometrika, Biometrika Trust, vol. 98(2), pages 355-370.
- Shengji Jia & Chunming Zhang & Hulin Wu, 2019. "Efficient semiparametric regression for longitudinal data with regularised estimation of error covariance function," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 31(4), pages 867-886, October.
- Yao, Fang & Muller, Hans-Georg & Wang, Jane-Ling, 2005. "Functional Data Analysis for Sparse Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 577-590, June.
- Peter Hall & Hans‐Georg Müller & Fang Yao, 2008. "Modelling sparse generalized longitudinal observations with latent Gaussian processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 703-723, September.
- Rothman, Adam J. & Levina, Elizaveta & Zhu, Ji, 2009. "Generalized Thresholding of Large Covariance Matrices," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 177-186.
- Lin X. & Carroll R. J., 2001. "Semiparametric Regression for Clustered Data Using Generalized Estimating Equations," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1045-1056, September.
- Lingzhou Xue & Shiqian Ma & Hui Zou, 2012. "Positive-Definite ℓ 1 -Penalized Estimation of Large Covariance Matrices," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1480-1491, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xueying Zheng & Wing Fung & Zhongyi Zhu, 2013. "Robust estimation in joint mean–covariance regression model for longitudinal data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(4), pages 617-638, August.
- Rui Li & Chenlei Leng & Jinhong You, 2017. "A Semiparametric Regression Model for Longitudinal Data with Non-stationary Errors," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 932-950, December.
- Cho, Hyunkeun & Kim, Seonjin, 2017. "Model specification test in a semiparametric regression model for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 105-116.
- Jia Chen & Degui Li & Hua Liang & Suojin Wang, 2014. "Semiparametric GEE Analysis in Partially Linear Single-Index Models for Longitudinal Data," Discussion Papers 14/26, Department of Economics, University of York.
- Cederbaum, Jona & Scheipl, Fabian & Greven, Sonja, 2018. "Fast symmetric additive covariance smoothing," Computational Statistics & Data Analysis, Elsevier, vol. 120(C), pages 25-41.
- Li, Jialiang & Xia, Yingcun & Palta, Mari & Shankar, Anoop, 2009. "Impact of unknown covariance structures in semiparametric models for longitudinal data: An application to Wisconsin diabetes data," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4186-4197, October.
- Jia Chen & Degui Li & Yingcun Xia, 2015. "New Semiparametric Estimation Procedure for Functional Coefficient Longitudinal Data Models," Discussion Papers 15/17, Department of Economics, University of York.
- Chen, Ziqi & Shi, Ning-Zhong & Gao, Wei & Tang, Man-Lai, 2011. "Efficient semiparametric estimation via Cholesky decomposition for longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3344-3354, December.
- Chen, Jia & Li, Degui & Xia, Yingcun, 2019. "Estimation of a rank-reduced functional-coefficient panel data model with serial correlation," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 456-479.
- Al Kadiri, M. & Carroll, R.J. & Wand, M.P., 2010. "Marginal longitudinal semiparametric regression via penalized splines," Statistics & Probability Letters, Elsevier, vol. 80(15-16), pages 1242-1252, August.
- Weicheng Zhu & Sheng Xu & Catherine C. Liu & Yehua Li, 2023. "Minimax powerful functional analysis of covariance tests with application to longitudinal genome‐wide association studies," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(1), pages 266-295, March.
- Avagyan, Vahe & Nogales, Francisco J., 2015. "D-trace Precision Matrix Estimation Using Adaptive Lasso Penalties," DES - Working Papers. Statistics and Econometrics. WS 21775, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Kashlak, Adam B., 2021. "Non-asymptotic error controlled sparse high dimensional precision matrix estimation," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
- Yan Zhang & Jiyuan Tao & Zhixiang Yin & Guoqiang Wang, 2022. "Improved Large Covariance Matrix Estimation Based on Efficient Convex Combination and Its Application in Portfolio Optimization," Mathematics, MDPI, vol. 10(22), pages 1-15, November.
- Brajendra C. Sutradhar & Vandna Jowaheer & R. Prabhakar Rao, 2016. "Semi-Parametric Models for Negative Binomial Panel Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 78(2), pages 269-303, August.
- Lam, Clifford, 2020. "High-dimensional covariance matrix estimation," LSE Research Online Documents on Economics 101667, London School of Economics and Political Science, LSE Library.
- Huaihou Chen & Yuanjia Wang, 2011. "A Penalized Spline Approach to Functional Mixed Effects Model Analysis," Biometrics, The International Biometric Society, vol. 67(3), pages 861-870, September.
- Yixin Chen & Weixin Yao, 2017. "Unified Inference for Sparse and Dense Longitudinal Data in Time-varying Coefficient Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 268-284, March.
- Joo, Young C. & Park, Sung Y., 2021. "Optimal portfolio selection using a simple double-shrinkage selection rule," Finance Research Letters, Elsevier, vol. 43(C).
- Bailey, Natalia & Pesaran, M. Hashem & Smith, L. Vanessa, 2019.
"A multiple testing approach to the regularisation of large sample correlation matrices,"
Journal of Econometrics, Elsevier, vol. 208(2), pages 507-534.
- Natalia Bailey & Vanessa Smith & M. Hashem Pesaran, 2014. "A multiple testing approach to the regularisation of large sample correlation matrices," Cambridge Working Papers in Economics 1413, Faculty of Economics, University of Cambridge.
- Natalia Bailey & M. Hashem Pesaran & L. Vanessa Smith, 2015. "A Multiple Testing Approach to the Regularisation of Large Sample Correlation Matrices," Working Papers 764, Queen Mary University of London, School of Economics and Finance.
- Natalia Bailey & M. Hashem Pesaran & L. Vanessa Smith, 2014. "A Multiple Testing Approach to the Regularisation of Large Sample Correlation Matrices," CESifo Working Paper Series 4834, CESifo.
More about this item
Keywords
Covariance function; High-dimensional covariance matrix; Local linear regression; Method of regularization; Profile weighted least squares; Varying-coefficient partially linear model;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:187:y:2022:i:c:s0047259x21001767. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.