IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v187y2022ics0047259x21001767.html
   My bibliography  Save this article

Covariance function versus covariance matrix estimation in efficient semi-parametric regression for longitudinal data analysis

Author

Listed:
  • Jia, Shengji
  • Zhang, Chunming
  • Lu, Haoran

Abstract

Improving estimation efficiency for regression coefficients is an important issue in the analysis of longitudinal data, which involves estimating the covariance matrix of the within-subject errors. In the balanced or nearly balanced setting, we can also regard the covariance matrix of the dependent errors as the bivariate covariance function evaluated at specific time points. In this paper, we compare the performance of the proposed regularized-covariance-function-based estimator and the conventional high-dimensional covariance matrix estimator of the within-subject errors. It shows that when the number p of the time points in each subject is large enough compared to the number n of the subjects, i.e., p≫n1/4logn, the estimation errors of the high-dimensional covariance matrix will be accumulated, therefore the error bound of the proposed regularized-covariance-function-based estimator will be smaller than that of the high-dimensional covariance matrix estimator in Frobenius norm. We also assess the performance of these two estimators for the incomplete longitudinal data. All the comparisons and theoretical results are illustrated using both simulated and real data.

Suggested Citation

  • Jia, Shengji & Zhang, Chunming & Lu, Haoran, 2022. "Covariance function versus covariance matrix estimation in efficient semi-parametric regression for longitudinal data analysis," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
  • Handle: RePEc:eee:jmvana:v:187:y:2022:i:c:s0047259x21001767
    DOI: 10.1016/j.jmva.2021.104900
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X21001767
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2021.104900?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adam J. Rothman, 2012. "Positive definite estimators of large covariance matrices," Biometrika, Biometrika Trust, vol. 99(3), pages 733-740.
    2. Fan, Jianqing & Huang, Tao & Li, Runze, 2007. "Analysis of Longitudinal Data With Semiparametric Estimation of Covariance Function," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 632-641, June.
    3. Wei Biao Wu, 2003. "Nonparametric estimation of large covariance matrices of longitudinal data," Biometrika, Biometrika Trust, vol. 90(4), pages 831-844, December.
    4. Naisyin Wang & Raymond J. Carroll & Xihong Lin, 2005. "Efficient Semiparametric Marginal Estimation for Longitudinal/Clustered Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 147-157, March.
    5. Jianxin Pan, 2003. "On modelling mean-covariance structures in longitudinal studies," Biometrika, Biometrika Trust, vol. 90(1), pages 239-244, March.
    6. Fan, Jianqing & Wu, Yichao, 2008. "Semiparametric Estimation of Covariance Matrixes for Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1520-1533.
    7. Yehua Li, 2011. "Efficient semiparametric regression for longitudinal data with nonparametric covariance estimation," Biometrika, Biometrika Trust, vol. 98(2), pages 355-370.
    8. Shengji Jia & Chunming Zhang & Hulin Wu, 2019. "Efficient semiparametric regression for longitudinal data with regularised estimation of error covariance function," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 31(4), pages 867-886, October.
    9. Yao, Fang & Muller, Hans-Georg & Wang, Jane-Ling, 2005. "Functional Data Analysis for Sparse Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 577-590, June.
    10. Peter Hall & Hans‐Georg Müller & Fang Yao, 2008. "Modelling sparse generalized longitudinal observations with latent Gaussian processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 703-723, September.
    11. Rothman, Adam J. & Levina, Elizaveta & Zhu, Ji, 2009. "Generalized Thresholding of Large Covariance Matrices," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 177-186.
    12. Lin X. & Carroll R. J., 2001. "Semiparametric Regression for Clustered Data Using Generalized Estimating Equations," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1045-1056, September.
    13. Lingzhou Xue & Shiqian Ma & Hui Zou, 2012. "Positive-Definite ℓ 1 -Penalized Estimation of Large Covariance Matrices," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1480-1491, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui Li & Chenlei Leng & Jinhong You, 2017. "A Semiparametric Regression Model for Longitudinal Data with Non-stationary Errors," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 932-950, December.
    2. Xueying Zheng & Wing Fung & Zhongyi Zhu, 2013. "Robust estimation in joint mean–covariance regression model for longitudinal data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(4), pages 617-638, August.
    3. Jia Chen & Degui Li & Yingcun Xia, 2015. "New Semiparametric Estimation Procedure for Functional Coefficient Longitudinal Data Models," Discussion Papers 15/17, Department of Economics, University of York.
    4. Chen, Jia & Li, Degui & Xia, Yingcun, 2019. "Estimation of a rank-reduced functional-coefficient panel data model with serial correlation," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 456-479.
    5. Weicheng Zhu & Sheng Xu & Catherine C. Liu & Yehua Li, 2023. "Minimax powerful functional analysis of covariance tests with application to longitudinal genome‐wide association studies," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(1), pages 266-295, March.
    6. Cho, Hyunkeun & Kim, Seonjin, 2017. "Model specification test in a semiparametric regression model for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 105-116.
    7. Jia Chen & Degui Li & Hua Liang & Suojin Wang, 2014. "Semiparametric GEE Analysis in Partially Linear Single-Index Models for Longitudinal Data," Discussion Papers 14/26, Department of Economics, University of York.
    8. Cederbaum, Jona & Scheipl, Fabian & Greven, Sonja, 2018. "Fast symmetric additive covariance smoothing," Computational Statistics & Data Analysis, Elsevier, vol. 120(C), pages 25-41.
    9. Li, Jialiang & Xia, Yingcun & Palta, Mari & Shankar, Anoop, 2009. "Impact of unknown covariance structures in semiparametric models for longitudinal data: An application to Wisconsin diabetes data," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4186-4197, October.
    10. Chen, Ziqi & Shi, Ning-Zhong & Gao, Wei & Tang, Man-Lai, 2011. "Efficient semiparametric estimation via Cholesky decomposition for longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3344-3354, December.
    11. Al Kadiri, M. & Carroll, R.J. & Wand, M.P., 2010. "Marginal longitudinal semiparametric regression via penalized splines," Statistics & Probability Letters, Elsevier, vol. 80(15-16), pages 1242-1252, August.
    12. Kashlak, Adam B., 2021. "Non-asymptotic error controlled sparse high dimensional precision matrix estimation," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
    13. Brajendra C. Sutradhar & Vandna Jowaheer & R. Prabhakar Rao, 2016. "Semi-Parametric Models for Negative Binomial Panel Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 78(2), pages 269-303, August.
    14. Lam, Clifford, 2020. "High-dimensional covariance matrix estimation," LSE Research Online Documents on Economics 101667, London School of Economics and Political Science, LSE Library.
    15. Bailey, Natalia & Pesaran, M. Hashem & Smith, L. Vanessa, 2019. "A multiple testing approach to the regularisation of large sample correlation matrices," Journal of Econometrics, Elsevier, vol. 208(2), pages 507-534.
    16. Yang, Yihe & Zhou, Jie & Pan, Jianxin, 2021. "Estimation and optimal structure selection of high-dimensional Toeplitz covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    17. Zhong, Rou & Liu, Shishi & Li, Haocheng & Zhang, Jingxiao, 2022. "Robust functional principal component analysis for non-Gaussian longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    18. Vahe Avagyan & Andrés M. Alonso & Francisco J. Nogales, 2018. "D-trace estimation of a precision matrix using adaptive Lasso penalties," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 425-447, June.
    19. Denis Belomestny & Mathias Trabs & Alexandre Tsybakov, 2017. "Sparse covariance matrix estimation in high-dimensional deconvolution," Working Papers 2017-25, Center for Research in Economics and Statistics.
    20. Ding, Yi & Li, Yingying & Zheng, Xinghua, 2021. "High dimensional minimum variance portfolio estimation under statistical factor models," Journal of Econometrics, Elsevier, vol. 222(1), pages 502-515.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:187:y:2022:i:c:s0047259x21001767. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.