IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Multi-index regression models with missing covariates at random

Listed author(s):
  • Guo, Xu
  • Xu, Wangli
  • Zhu, Lixing

This paper considers estimation of the semiparametric multi-index model with missing covariates at random. A weighted estimating equation is suggested by invoking the inverse selection probability approach, and estimators of the indices are respectively defined when the selection probability is known in advance, is estimated parametrically and nonparametrically. The consistency is provided. For the single-index model, the large sample properties show that the estimators with both parametric and nonparametric plug-in estimations can play an important role to achieve smaller limiting variances than the estimator with the true selection probability. Simulation studies are carried out to assess the finite sample performance of the proposed estimators. The proposed methods are applied to an AIDS clinical trials dataset to examine which method could be more efficient. A horse colic dataset is also analyzed for illustration.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0047259X13002133
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Multivariate Analysis.

Volume (Year): 123 (2014)
Issue (Month): C ()
Pages: 345-363

as
in new window

Handle: RePEc:eee:jmvana:v:123:y:2014:i:c:p:345-363
DOI: 10.1016/j.jmva.2013.10.006
Contact details of provider: Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description

Order Information: Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
Web: https://shop.elsevier.com/order?id=622892&ref=622892_01_ooc_1&version=01

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Lixing Zhu & Liugen Xue, 2006. "Empirical likelihood confidence regions in a partially linear single-index model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 549-570.
  2. Yingcun Xia & Howell Tong & W. K. Li & Li-Xing Zhu, 2002. "An adaptive estimation of dimension reduction space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 363-410.
  3. Li-Ping Zhu & Li-Xing Zhu, 2009. "On distribution-weighted partial least squares with diverging number of highly correlated predictors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 525-548.
  4. Chang, Ziqing & Xue, Liugen & Zhu, Lixing, 2010. "On an asymptotically more efficient estimation of the single-index model," Journal of Multivariate Analysis, Elsevier, vol. 101(8), pages 1898-1901, September.
  5. Xia, Yingcun, 2006. "Asymptotic Distributions For Two Estimators Of The Single-Index Model," Econometric Theory, Cambridge University Press, vol. 22(06), pages 1112-1137, December.
  6. Lin X. & Carroll R. J., 2001. "Semiparametric Regression for Clustered Data Using Generalized Estimating Equations," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1045-1056, September.
  7. Liping Zhu & Tao Wang & Lixing Zhu & Louis Ferré, 2010. "Sufficient dimension reduction through discretization-expectation estimation," Biometrika, Biometrika Trust, vol. 97(2), pages 295-304.
  8. Xue, Liu-Gen & Zhu, Lixing, 2006. "Empirical likelihood for single-index models," Journal of Multivariate Analysis, Elsevier, vol. 97(6), pages 1295-1312, July.
  9. Zhu, Li-Ping & Zhu, Li-Xing & Feng, Zheng-Hui, 2010. "Dimension Reduction in Regressions Through Cumulative Slicing Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1455-1466.
  10. Hulin Wu & A. Adam Ding, 1999. "Population HIV-1 Dynamics In Vivo: Applicable Models and Inferential Tools for Virological Data from AIDS Clinical Trials," Biometrics, The International Biometric Society, vol. 55(2), pages 410-418, 06.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:123:y:2014:i:c:p:345-363. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.