IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v109y2012icp130-145.html
   My bibliography  Save this article

Bivariate gamma-geometric law and its induced Lévy process

Author

Listed:
  • Barreto-Souza, Wagner

Abstract

In this article we introduce a three-parameter extension of the bivariate exponential-geometric (BEG) law (Kozubowski and Panorska, 2005) [4]. We refer to this new distribution as the bivariate gamma-geometric (BGG) law. A bivariate random vector (X,N) follows the BGG law if N has geometric distribution and X may be represented (in law) as a sum of N independent and identically distributed gamma variables, where these variables are independent of N. Statistical properties such as moment generation and characteristic functions, moments and a variance–covariance matrix are provided. The marginal and conditional laws are also studied. We show that BBG distribution is infinitely divisible, just as the BEG model is. Further, we provide alternative representations for the BGG distribution and show that it enjoys a geometric stability property. Maximum likelihood estimation and inference are discussed and a reparametrization is proposed in order to obtain orthogonality of the parameters. We present an application to a real data set where our model provides a better fit than the BEG model. Our bivariate distribution induces a bivariate Lévy process with correlated gamma and negative binomial processes, which extends the bivariate Lévy motion proposed by Kozubowski et al. (2008) [6]. The marginals of our Lévy motion are a mixture of gamma and negative binomial processes and we named it BMixGNB motion. Basic properties such as stochastic self-similarity and the covariance matrix of the process are presented. The bivariate distribution at fixed time of our BMixGNB process is also studied and some results are derived, including a discussion about maximum likelihood estimation and inference.

Suggested Citation

  • Barreto-Souza, Wagner, 2012. "Bivariate gamma-geometric law and its induced Lévy process," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 130-145.
  • Handle: RePEc:eee:jmvana:v:109:y:2012:i:c:p:130-145
    DOI: 10.1016/j.jmva.2012.03.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X12000735
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2012.03.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kozubowski, Tomasz J. & Panorska, Anna K. & Podgórski, Krzysztof, 2008. "A bivariate Lévy process with negative binomial and gamma marginals," Journal of Multivariate Analysis, Elsevier, vol. 99(7), pages 1418-1437, August.
    2. Felipe Gusmão & Edwin Ortega & Gauss Cordeiro, 2011. "The generalized inverse Weibull distribution," Statistical Papers, Springer, vol. 52(3), pages 591-619, August.
    3. Chahkandi, M. & Ganjali, M., 2009. "On some lifetime distributions with decreasing failure rate," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4433-4440, October.
    4. Morais, Alice Lemos & Barreto-Souza, Wagner, 2011. "A compound class of Weibull and power series distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1410-1425, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Charles K. Amponsah & Tomasz J. Kozubowski & Anna K. Panorska, 2021. "A general stochastic model for bivariate episodes driven by a gamma sequence," Journal of Statistical Distributions and Applications, Springer, vol. 8(1), pages 1-31, December.
    2. Mehdi Basikhasteh & Iman Makhdoom, 2022. "Bayesian inference of bivariate Weibull geometric model based on LINEX and quadratic loss functions," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 867-880, April.
    3. Francesco Zuniga & Tomasz J. Kozubowski & Anna K. Panorska, 2021. "A new trivariate model for stochastic episodes," Journal of Statistical Distributions and Applications, Springer, vol. 8(1), pages 1-21, December.
    4. Debasis Kundu, 2020. "On a General Class of Discrete Bivariate Distributions," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 270-304, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rasool Roozegar & Saralees Nadarajah & Eisa Mahmoudi, 2022. "The Power Series Exponential Power Series Distributions with Applications to Failure Data Sets," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 44-78, May.
    2. Vicente G. Cancho & Márcia A. C. Macera & Adriano K. Suzuki & Francisco Louzada & Katherine E. C. Zavaleta, 2020. "A new long-term survival model with dispersion induced by discrete frailty," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 221-244, April.
    3. Mahmoudi, Eisa & Jafari, Ali Akbar, 2012. "Generalized exponential–power series distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4047-4066.
    4. Bagheri, S.F. & Bahrami Samani, E. & Ganjali, M., 2016. "The generalized modified Weibull power series distribution: Theory and applications," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 136-160.
    5. Rasool Roozegar & G. G. Hamedani & Leila Amiri & Fatemeh Esfandiyari, 2020. "A New Family of Lifetime Distributions: Theory, Application and Characterizations," Annals of Data Science, Springer, vol. 7(1), pages 109-138, March.
    6. Jimut Bahan Chakrabarty & Shovan Chowdhury, 2016. "Compounded Inverse Weibull Distributions: Properties, Inference and Applications," Working papers 213, Indian Institute of Management Kozhikode.
    7. Saralees Nadarajah & Božidar Popović & Miroslav Ristić, 2013. "Compounding: an R package for computing continuous distributions obtained by compounding a continuous and a discrete distribution," Computational Statistics, Springer, vol. 28(3), pages 977-992, June.
    8. Sandeep Kumar Maurya & Saralees Nadarajah, 2021. "Poisson Generated Family of Distributions: A Review," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 484-540, November.
    9. Silva, Rodrigo B. & Bourguignon, Marcelo & Dias, Cícero R.B. & Cordeiro, Gauss M., 2013. "The compound class of extended Weibull power series distributions," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 352-367.
    10. Debasis Kundu, 2020. "On a General Class of Discrete Bivariate Distributions," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 270-304, November.
    11. Shovan Chowdhury, 2014. "Compounded Generalized Weibull Distributions - A Unified Approach," Working papers 148, Indian Institute of Management Kozhikode.
    12. Almalki, Saad J. & Nadarajah, Saralees, 2014. "Modifications of the Weibull distribution: A review," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 32-55.
    13. Shovan Chowdhury & Asok K Nanda, 2015. "A special class of distorted premium principle based on an extension of the exponential-geometric distribution," Working papers 188, Indian Institute of Management Kozhikode.
    14. Muhammad H Tahir & Gauss M. Cordeiro, 2016. "Compounding of distributions: a survey and new generalized classes," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-35, December.
    15. Beatriz R. Lanjoni & Edwin M. M. Ortega & Gauss M. Cordeiro, 2016. "Extended Burr XII Regression Models: Theory and Applications," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(1), pages 203-224, March.
    16. Amal S. Hassan & Salwa M. Assar, 2021. "A New Class of Power Function Distribution: Properties and Applications," Annals of Data Science, Springer, vol. 8(2), pages 205-225, June.
    17. Bobotas, Panayiotis & Koutras, Markos V., 2019. "Distributions of the minimum and the maximum of a random number of random variables," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 57-64.
    18. Mahmoudi, Eisa & Sepahdar, Afsaneh, 2013. "Exponentiated Weibull–Poisson distribution: Model, properties and applications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 92(C), pages 76-97.
    19. Mojtaba Alizadeh & Seyyed Fazel Bagheri & Mohammad Alizadeh & Saralees Nadarajah, 2017. "A new four-parameter lifetime distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(5), pages 767-797, April.
    20. Gauss Cordeiro & Josemar Rodrigues & Mário Castro, 2012. "The exponential COM-Poisson distribution," Statistical Papers, Springer, vol. 53(3), pages 653-664, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:109:y:2012:i:c:p:130-145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.