IDEAS home Printed from https://ideas.repec.org/a/spr/sankhb/v83y2021i2d10.1007_s13571-020-00237-8.html
   My bibliography  Save this article

Poisson Generated Family of Distributions: A Review

Author

Listed:
  • Sandeep Kumar Maurya

    (Central University of South Bihar
    University of Manchester)

  • Saralees Nadarajah

    (University of Manchester)

Abstract

The present article represents a survey on Poisson generated family of distributions. Based on this family of distribution, several transformations and distributions have been proposed. Out of which, some of them are proposed by referencing it, and some are independent. The family can be proposed by using the compounding concept of zero truncated Poisson distribution with any other model or family of distributions. Here, we provide a complete survey on this family of distributions and list the contributory related research works. We also address 12 power series distributions, 77 distributions based on the Poisson family of distribution, and 23 distributions, based on different ten transformation methods based on this family of distribution. These numbers show the importance of the Poisson family of distribution.

Suggested Citation

  • Sandeep Kumar Maurya & Saralees Nadarajah, 2021. "Poisson Generated Family of Distributions: A Review," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 484-540, November.
  • Handle: RePEc:spr:sankhb:v:83:y:2021:i:2:d:10.1007_s13571-020-00237-8
    DOI: 10.1007/s13571-020-00237-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13571-020-00237-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13571-020-00237-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leila Delgarm & Mohammad Zadkarami, 2015. "A new generalization of lifetime distributions," Computational Statistics, Springer, vol. 30(4), pages 1185-1198, December.
    2. Cancho, Vicente G. & Louzada-Neto, Franscisco & Barriga, Gladys D.C., 2011. "The Poisson-exponential lifetime distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 677-686, January.
    3. Richard L. Smith & J. C. Naylor, 1987. "A Comparison of Maximum Likelihood and Bayesian Estimators for the Three‐Parameter Weibull Distribution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 36(3), pages 358-369, November.
    4. Adamidis, K. & Loukas, S., 1998. "A lifetime distribution with decreasing failure rate," Statistics & Probability Letters, Elsevier, vol. 39(1), pages 35-42, July.
    5. Sanku Dey & Indranil Ghosh & Devendra Kumar, 2019. "Alpha-Power Transformed Lindley Distribution: Properties and Associated Inference with Application to Earthquake Data," Annals of Data Science, Springer, vol. 6(4), pages 623-650, December.
    6. Wanbo Lu & Daimin Shi, 2012. "A new compounding life distribution: the Weibull--Poisson distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(1), pages 21-38, March.
    7. Sanku Dey & Vikas Kumar Sharma & Mhamed Mesfioui, 2017. "A New Extension of Weibull Distribution with Application to Lifetime Data," Annals of Data Science, Springer, vol. 4(1), pages 31-61, March.
    8. Saralees Nadarajah & Vicente Cancho & Edwin Ortega, 2013. "The geometric exponential Poisson distribution," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(3), pages 355-380, August.
    9. Ayman Alzaatreh & Carl Lee & Felix Famoye, 2013. "A new method for generating families of continuous distributions," METRON, Springer;Sapienza Università di Roma, vol. 71(1), pages 63-79, June.
    10. S. K. Maurya & A. Kaushik & S. K. Singh & U. Singh, 2017. "A new class of distribution having decreasing, increasing, and bathtub-shaped failure rate," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(20), pages 10359-10372, October.
    11. Gauss Cordeiro & Josemar Rodrigues & Mário Castro, 2012. "The exponential COM-Poisson distribution," Statistical Papers, Springer, vol. 53(3), pages 653-664, August.
    12. Karlis, Dimitris, 2009. "A note on the exponential Poisson distribution: A nested EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 894-899, February.
    13. Mahmoudi, Eisa & Sepahdar, Afsaneh, 2013. "Exponentiated Weibull–Poisson distribution: Model, properties and applications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 92(C), pages 76-97.
    14. Hassan Bakouch, 2013. "R for statistics," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(4), pages 924-924.
    15. Abbas Mahdavi & Debasis Kundu, 2017. "A new method for generating distributions with an application to exponential distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(13), pages 6543-6557, July.
    16. Chahkandi, M. & Ganjali, M., 2009. "On some lifetime distributions with decreasing failure rate," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4433-4440, October.
    17. M. C. Jones, 2018. "Letter to the Editor concerning “A new method for generating distributions with an application to exponential distribution” and “Alpha power Weibull distribution: Properties and applications”," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 47(20), pages 5096-5096, October.
    18. David Hinkley, 1977. "On Quick Choice of Power Transformation," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 26(1), pages 67-69, March.
    19. Cooner, Freda & Banerjee, Sudipto & Carlin, Bradley P. & Sinha, Debajyoti, 2007. "Flexible Cure Rate Modeling Under Latent Activation Schemes," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 560-572, June.
    20. Muhammad H Tahir & Gauss M. Cordeiro, 2016. "Compounding of distributions: a survey and new generalized classes," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-35, December.
    21. Zubair Ahmad, 2020. "The Zubair-G Family of Distributions: Properties and Applications," Annals of Data Science, Springer, vol. 7(2), pages 195-208, June.
    22. Suleman Nasiru & Peter N. Mwita & Oscar Ngesa, 2019. "Exponentiated Generalized Power Series Family of Distributions," Annals of Data Science, Springer, vol. 6(3), pages 463-489, September.
    23. Barreto-Souza, Wagner & Cribari-Neto, Francisco, 2009. "A generalization of the exponential-Poisson distribution," Statistics & Probability Letters, Elsevier, vol. 79(24), pages 2493-2500, December.
    24. Amal S. Hassan & M. Elgarhy & Rokaya E. Mohamd & Sharifah Alrajhi, 2019. "On the Alpha Power Transformed Power Lindley Distribution," Journal of Probability and Statistics, Hindawi, vol. 2019, pages 1-13, January.
    25. Silva, Rodrigo B. & Bourguignon, Marcelo & Dias, Cícero R.B. & Cordeiro, Gauss M., 2013. "The compound class of extended Weibull power series distributions," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 352-367.
    26. Mahmoudi, Eisa & Jafari, Ali Akbar, 2012. "Generalized exponential–power series distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4047-4066.
    27. Gauss M. Cordeiro & Edwin Ortega & Artur Lemonte, 2015. "The Poisson Generalized Linear Failure Rate Model," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(10), pages 2037-2058, May.
    28. Morais, Alice Lemos & Barreto-Souza, Wagner, 2011. "A compound class of Weibull and power series distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1410-1425, March.
    29. M. Nassar & A. Alzaatreh & M. Mead & O. Abo-Kasem, 2017. "Alpha power Weibull distribution: Properties and applications," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(20), pages 10236-10252, October.
    30. Richard Blundell & Alan Duncan & Krishna Pendakur, 1998. "Semiparametric estimation and consumer demand," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(5), pages 435-461.
    31. Sanku Dey & Mazen Nassar & Devendra Kumar, 2017. "$$\alpha $$ α Logarithmic Transformed Family of Distributions with Application," Annals of Data Science, Springer, vol. 4(4), pages 457-482, December.
    32. Teena Goyal & Piyush K. Rai & Sandeep K. Maurya, 2020. "Bayesian Estimation for GDUS Exponential Distribution Under Type-I Progressive Hybrid Censoring," Annals of Data Science, Springer, vol. 7(2), pages 307-345, June.
    33. Antonio E. Gomes & Cibele Q. Da-Silva & Gauss M. Cordeiro, 2015. "The Exponentiated G Poisson Model," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(20), pages 4217-4240, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed Elshahhat & EL-Sayed A. El-Sherpieny & Amal S. Hassan, 2023. "The Pareto–Poisson Distribution: Characteristics, Estimations and Engineering Applications," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 1058-1099, February.
    2. Broderick Oluyede & Thatayaone Moakofi, 2023. "The Gamma-Topp-Leone-Type II-Exponentiated Half Logistic-G Family of Distributions with Applications," Stats, MDPI, vol. 6(2), pages 1-28, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad H Tahir & Gauss M. Cordeiro, 2016. "Compounding of distributions: a survey and new generalized classes," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-35, December.
    2. Rasool Roozegar & Saralees Nadarajah & Eisa Mahmoudi, 2022. "The Power Series Exponential Power Series Distributions with Applications to Failure Data Sets," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 44-78, May.
    3. Silva, Rodrigo B. & Bourguignon, Marcelo & Dias, Cícero R.B. & Cordeiro, Gauss M., 2013. "The compound class of extended Weibull power series distributions," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 352-367.
    4. Mojtaba Alizadeh & Seyyed Fazel Bagheri & Mohammad Alizadeh & Saralees Nadarajah, 2017. "A new four-parameter lifetime distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(5), pages 767-797, April.
    5. Rasool Roozegar & G. G. Hamedani & Leila Amiri & Fatemeh Esfandiyari, 2020. "A New Family of Lifetime Distributions: Theory, Application and Characterizations," Annals of Data Science, Springer, vol. 7(1), pages 109-138, March.
    6. Bakouch, Hassan S. & Ristić, Miroslav M. & Asgharzadeh, A. & Esmaily, L. & Al-Zahrani, Bander M., 2012. "An exponentiated exponential binomial distribution with application," Statistics & Probability Letters, Elsevier, vol. 82(6), pages 1067-1081.
    7. Ahmed Elshahhat & EL-Sayed A. El-Sherpieny & Amal S. Hassan, 2023. "The Pareto–Poisson Distribution: Characteristics, Estimations and Engineering Applications," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 1058-1099, February.
    8. Ibrahim Elbatal & Emrah Altun & Ahmed Z. Afify & Gamze Ozel, 2019. "The Generalized Burr XII Power Series Distributions with Properties and Applications," Annals of Data Science, Springer, vol. 6(3), pages 571-597, September.
    9. Mahmoudi, Eisa & Jafari, Ali Akbar, 2012. "Generalized exponential–power series distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4047-4066.
    10. Francesca Condino & Filippo Domma, 2017. "A new distribution function with bounded support: the reflected generalized Topp-Leone power series distribution," METRON, Springer;Sapienza Università di Roma, vol. 75(1), pages 51-68, April.
    11. Amal S. Hassan & Salwa M. Assar, 2021. "A New Class of Power Function Distribution: Properties and Applications," Annals of Data Science, Springer, vol. 8(2), pages 205-225, June.
    12. Mahmoudi, Eisa & Sepahdar, Afsaneh, 2013. "Exponentiated Weibull–Poisson distribution: Model, properties and applications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 92(C), pages 76-97.
    13. Boikanyo Makubate & Fastel Chipepa & Broderick Oluyede & Peter O. Peter, 2021. "The Marshall-Olkin Half Logistic-G Family of Distributions With Applications," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(2), pages 120-120, March.
    14. Hadeel S Klakattawi, 2022. "Survival analysis of cancer patients using a new extended Weibull distribution," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-20, February.
    15. A. A. Ogunde & S. T. Fayose & B. Ajayi & D. O. Omosigho, 2020. "Properties, Inference and Applications of Alpha Power Extended Inverted Weibull Distribution," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 9(6), pages 1-90, November.
    16. Showkat Ahmad Lone & Tabassum Naz Sindhu & Marwa K. H. Hassan & Tahani A. Abushal & Sadia Anwar & Anum Shafiq, 2023. "Theoretical Structure and Applications of a Newly Enhanced Gumbel Type II Model," Mathematics, MDPI, vol. 11(8), pages 1-18, April.
    17. Rodrigues, Josemar & Balakrishnan, N. & Cordeiro, Gauss M. & de Castro, Mário, 2011. "A unified view on lifetime distributions arising from selection mechanisms," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3311-3319, December.
    18. Bao Yiqi & Cibele Maria Russo & Vicente G. Cancho & Francisco Louzada, 2016. "Influence diagnostics for the Weibull-Negative-Binomial regression model with cure rate under latent failure causes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(6), pages 1027-1060, May.
    19. Maha A Aldahlan & Farrukh Jamal & Christophe Chesneau & Ibrahim Elbatal & Mohammed Elgarhy, 2020. "Exponentiated power generalized Weibull power series family of distributions: Properties, estimation and applications," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-25, March.
    20. Shumaila Ihtisham & Alamgir Khalil & Sadaf Manzoor & Sajjad Ahmad Khan & Amjad Ali, 2019. "Alpha-Power Pareto distribution: Its properties and applications," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-15, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankhb:v:83:y:2021:i:2:d:10.1007_s13571-020-00237-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.