IDEAS home Printed from
   My bibliography  Save this article

The proportional hazards model for survey data from independent and clustered super-populations


  • Rubin-Bleuer, Susana


Data from most complex surveys are subject to selection bias and clustering due to the sampling design. Results developed for a random sample from a super-population model may not apply. Ignoring the survey sampling weights may cause biased estimators and erroneous confidence intervals. In this paper, we use the design approach for fitting the proportional hazards (PH) model and prove formally the asymptotic normality of the sample maximum partial likelihood (SMPL) estimators under the PH model for both stochastically independent and clustered failure times. In the first case, we use the central limit theorem for martingales in the joint design-model space, and this enables us to obtain results for a general multistage sampling design under mild and easily verifiable conditions. In the case of clustered failure times, we require asymptotic normality in the sampling design space directly, and this holds for fewer sampling designs than in the first case. We also propose a variance estimator of the SMPL estimator. A key property of this variance estimator is that we do not have to specify the second-stage correlation model.

Suggested Citation

  • Rubin-Bleuer, Susana, 2011. "The proportional hazards model for survey data from independent and clustered super-populations," Journal of Multivariate Analysis, Elsevier, vol. 102(5), pages 884-895, May.
  • Handle: RePEc:eee:jmvana:v:102:y:2011:i:5:p:884-895

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Yuan, Ke-Hai & Jennrich, Robert I., 1998. "Asymptotics of Estimating Equations under Natural Conditions," Journal of Multivariate Analysis, Elsevier, vol. 65(2), pages 245-260, May.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:102:y:2011:i:5:p:884-895. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.