IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

The proportional hazards model for survey data from independent and clustered super-populations

Listed author(s):
  • Rubin-Bleuer, Susana
Registered author(s):

    Data from most complex surveys are subject to selection bias and clustering due to the sampling design. Results developed for a random sample from a super-population model may not apply. Ignoring the survey sampling weights may cause biased estimators and erroneous confidence intervals. In this paper, we use the design approach for fitting the proportional hazards (PH) model and prove formally the asymptotic normality of the sample maximum partial likelihood (SMPL) estimators under the PH model for both stochastically independent and clustered failure times. In the first case, we use the central limit theorem for martingales in the joint design-model space, and this enables us to obtain results for a general multistage sampling design under mild and easily verifiable conditions. In the case of clustered failure times, we require asymptotic normality in the sampling design space directly, and this holds for fewer sampling designs than in the first case. We also propose a variance estimator of the SMPL estimator. A key property of this variance estimator is that we do not have to specify the second-stage correlation model.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Journal of Multivariate Analysis.

    Volume (Year): 102 (2011)
    Issue (Month): 5 (May)
    Pages: 884-895

    in new window

    Handle: RePEc:eee:jmvana:v:102:y:2011:i:5:p:884-895
    Contact details of provider: Web page:

    Order Information: Postal:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Yuan, Ke-Hai & Jennrich, Robert I., 1998. "Asymptotics of Estimating Equations under Natural Conditions," Journal of Multivariate Analysis, Elsevier, vol. 65(2), pages 245-260, May.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:102:y:2011:i:5:p:884-895. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.