IDEAS home Printed from https://ideas.repec.org/a/spr/sankha/v86y2024i1d10.1007_s13171-023-00317-7.html
   My bibliography  Save this article

M-estimators for Models with a Mix of Discrete and Continuous Parameters

Author

Listed:
  • Ting Fung Ma

    (University of South Carolina)

  • Juan Francisco Mandujano Reyes

    (University of Wisconsin-Madison)

  • Jun Zhu

    (University of Wisconsin-Madison)

Abstract

A variety of parametric models are specified by a mix of discrete parameters, which take values from a countable set, and continuous parameters, which take values from a continuous space. However, the asymptotic properties of the parameter estimators are not well understood in the literature. In this paper, we consider the general framework of M-estimation and derive the asymptotic properties of the M-estimators of both discrete and continuous parameters. In particular, we show that the M-estimators are consistent and the continuous parameters are asymptotically normal. We also extend a large deviation principle from models with only discrete parameters to models with discrete and continuous parameters. The finite-sample properties are assessed by a simulation study, and for illustration, we perform a break-point analysis for the clinical outcomes of COVID-19 patients.

Suggested Citation

  • Ting Fung Ma & Juan Francisco Mandujano Reyes & Jun Zhu, 2024. "M-estimators for Models with a Mix of Discrete and Continuous Parameters," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 86(1), pages 164-190, February.
  • Handle: RePEc:spr:sankha:v:86:y:2024:i:1:d:10.1007_s13171-023-00317-7
    DOI: 10.1007/s13171-023-00317-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13171-023-00317-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13171-023-00317-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. White,Halbert, 1996. "Estimation, Inference and Specification Analysis," Cambridge Books, Cambridge University Press, number 9780521574464, Enero-Abr.
    2. Tauchen, George, 1985. "Diagnostic testing and evaluation of maximum likelihood models," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 415-443.
    3. Friedrich Liese & Igor Vajda, 1995. "Necessary and sufficient conditions for consistency of generalizedM-estimates," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 42(1), pages 291-324, December.
    4. James O. Berger & Jose M. Bernardo & Dongchu Sun, 2012. "Objective Priors for Discrete Parameter Spaces," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 636-648, June.
    5. Jenish, Nazgul & Prucha, Ingmar R., 2012. "On spatial processes and asymptotic inference under near-epoch dependence," Journal of Econometrics, Elsevier, vol. 170(1), pages 178-190.
    6. Jenish, Nazgul & Prucha, Ingmar R., 2009. "Central limit theorems and uniform laws of large numbers for arrays of random fields," Journal of Econometrics, Elsevier, vol. 150(1), pages 86-98, May.
    7. Yuan, Ke-Hai & Jennrich, Robert I., 1998. "Asymptotics of Estimating Equations under Natural Conditions," Journal of Multivariate Analysis, Elsevier, vol. 65(2), pages 245-260, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fei Jin & Lung-fei Lee, 2020. "Asymptotic properties of a spatial autoregressive stochastic frontier model," Journal of Spatial Econometrics, Springer, vol. 1(1), pages 1-40, December.
    2. Li, Kunpeng & Lin, Wei, 2024. "Threshold spatial autoregressive model," Journal of Econometrics, Elsevier, vol. 244(1).
    3. Shi, Wei & Lee, Lung-fei, 2018. "A spatial panel data model with time varying endogenous weights matrices and common factors," Regional Science and Urban Economics, Elsevier, vol. 72(C), pages 6-34.
    4. Abhimanyu Gupta & Jungyoon Lee & Francesca Rossi, 2024. "Testing linearity of spatial interaction functions \`a la Ramsey," Papers 2412.14778, arXiv.org, revised Apr 2025.
    5. Gabriele Fiorentini & Enrique Sentana, 2021. "Specification tests for non‐Gaussian maximum likelihood estimators," Quantitative Economics, Econometric Society, vol. 12(3), pages 683-742, July.
    6. Weining Wang & Jeffrey M. Wooldridge & Mengshan Xu & Cuicui Lu & Chaowen Zheng, 2025. "Using generalized estimating equations to estimate nonlinear models with spatial data," Econometric Reviews, Taylor & Francis Journals, vol. 44(2), pages 214-242, February.
    7. Gupta, Abhimanyu, 2018. "Autoregressive spatial spectral estimates," Journal of Econometrics, Elsevier, vol. 203(1), pages 80-95.
    8. Xiu Xu & Weining Wang & Yongcheol Shin & Chaowen Zheng, 2024. "Dynamic Network Quantile Regression Model," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(2), pages 407-421, April.
    9. Kojevnikov, Denis & Marmer, Vadim & Song, Kyungchul, 2021. "Limit theorems for network dependent random variables," Journal of Econometrics, Elsevier, vol. 222(2), pages 882-908.
    10. Rabovič, Renata & Čížek, Pavel, 2023. "Estimation of spatial sample selection models: A partial maximum likelihood approach," Journal of Econometrics, Elsevier, vol. 232(1), pages 214-243.
    11. Xu, Xiu & Wang, Weining & Shin, Yongcheol, 2020. "Dynamic Spatial Network Quantile Autoregression," IRTG 1792 Discussion Papers 2020-024, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    12. Tadao Hoshino, 2024. "Functional Spatial Autoregressive Models," Papers 2402.14763, arXiv.org, revised Oct 2024.
    13. Bera, Anil K. & Doğan, Osman & Taşpınar, Süleyman, 2018. "Simple tests for endogeneity of spatial weights matrices," Regional Science and Urban Economics, Elsevier, vol. 69(C), pages 130-142.
    14. Liu, Xiaodong & Prucha, Ingmar R., 2018. "A robust test for network generated dependence," Journal of Econometrics, Elsevier, vol. 207(1), pages 92-113.
    15. Yong Bao & Gucheng Li & Xiaotian Liu, 2024. "A Spatial Sample Selection Model," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(4), pages 928-950, August.
    16. Javier Hidalgo & Marcia M Schafgans, 2017. "Inference Without Smoothing for Large Panels with Cross- Sectional and Temporal Dependence," STICERD - Econometrics Paper Series 597, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    17. Guillaume Allaire Pouliot, 2022. "Spatial Econometrics for Misaligned Data," Papers 2207.04082, arXiv.org.
    18. Abhimanyu Gupta & Xi Qu, 2021. "Consistent specification testing under spatial dependence," Papers 2101.10255, arXiv.org, revised Aug 2022.
    19. Tauchen, George E., 1995. "New Minimum Chi-Square Methods in Empirical Finance," Working Papers 95-42, Duke University, Department of Economics.
    20. Kristensen, Dennis & Shin, Yongseok, 2012. "Estimation of dynamic models with nonparametric simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 167(1), pages 76-94.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankha:v:86:y:2024:i:1:d:10.1007_s13171-023-00317-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.