IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Likelihood ratio order of the second order statistic from independent heterogeneous exponential random variables

  • Zhao, Peng
  • Li, Xiaohu
  • Balakrishnan, N.
Registered author(s):

    Let X1,...,Xn be independent exponential random variables with respective hazard rates [lambda]1,...,[lambda]n, and let Y1,...,Yn be independent exponential random variables with common hazard rate [lambda]. This paper proves that X2:n, the second order statistic of X1,...,Xn, is larger than Y2:n, the second order statistic of Y1,...,Yn, in terms of the likelihood ratio order if and only if with . Also, it is shown that X2:n is smaller than Y2:n in terms of the likelihood ratio order if and only if These results form nice extensions of those on the hazard rate order in Pa[caron]lta[caron]nea [E. Pa[caron]lta[caron]nea, On the comparison in hazard rate ordering of fail-safe systems, Journal of Statistical Planning and Inference 138 (2008) 1993-1997].

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/B6WK9-4THJGHJ-1/2/e593ffc062fe31e521f6b2175993fac9
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Journal of Multivariate Analysis.

    Volume (Year): 100 (2009)
    Issue (Month): 5 (May)
    Pages: 952-962

    as
    in new window

    Handle: RePEc:eee:jmvana:v:100:y:2009:i:5:p:952-962
    Contact details of provider: Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description

    Order Information: Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/order?id=622892&ref=622892_01_ooc_1&version=01

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Proschan, F. & Sethuraman, J., 1976. "Stochastic comparisons of order statistics from heterogeneous populations, with applications in reliability," Journal of Multivariate Analysis, Elsevier, vol. 6(4), pages 608-616, December.
    2. Kochar, Subhash & Rojo, Javier, 1996. "Some New Results on Stochastic Comparisons of Spacings from Heterogeneous Exponential Distributions," Journal of Multivariate Analysis, Elsevier, vol. 59(2), pages 272-281, November.
    3. Boland, Philip J. & El-Neweihi, Emad & Proschan, Frank, 1994. "Schur properties of convolutions of exponential and geometric random variables," Journal of Multivariate Analysis, Elsevier, vol. 48(1), pages 157-167, January.
    4. Kochar, Subhash C & Korwar, Ramesh, 1996. "Stochastic Orders for Spacings of Heterogeneous Exponential Random Variables," Journal of Multivariate Analysis, Elsevier, vol. 57(1), pages 69-83, April.
    5. Lillo, Rosa E. & Nanda, Asok K. & Shaked, Moshe, 2001. "Preservation of some likelihood ratio stochastic orders by order statistics," Statistics & Probability Letters, Elsevier, vol. 51(2), pages 111-119, January.
    6. An, Mark Yuying, 1995. "Logconcavity versus Logconvexity: A Complete Characterization," Working Papers 95-03, Duke University, Department of Economics.
    7. Chang, Kuo-Hwa, 2001. "Stochastic orders of the sums of two exponential random variables," Statistics & Probability Letters, Elsevier, vol. 51(4), pages 389-396, February.
    8. Belzunce, Félix & Ruiz, José M. & Ruiz, M. Carmen, 2002. "On preservation of some shifted and proportional orders by systems," Statistics & Probability Letters, Elsevier, vol. 60(2), pages 141-154, November.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:100:y:2009:i:5:p:952-962. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.