A random walk stochastic volatility model for income inequality
Author
Abstract
Suggested Citation
DOI: 10.1016/j.japwor.2015.06.003
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Toshiaki Tachibanaki, 2005. "Confronting Income Inequality in Japan: A Comparative Analysis of Causes, Consequences, and Reform," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262201585, December.
- Lillard, Lee A & Willis, Robert J, 1978.
"Dynamic Aspects of Earning Mobility,"
Econometrica, Econometric Society, vol. 46(5), pages 985-1012, September.
- Lee A. Lillard & Robert J. Willis, 1976. "Dynamic Aspects of Earnings Mobility," NBER Working Papers 0150, National Bureau of Economic Research, Inc.
- Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comments: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 413-417, October.
- John Geweke, 1999. "Using Simulation Methods for Bayesian Econometric Models," Computing in Economics and Finance 1999 832, Society for Computational Economics.
- Frank Schorfheide, 2000. "Loss function-based evaluation of DSGE models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(6), pages 645-670.
- Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002.
"Bayesian Analysis of Stochastic Volatility Models,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
- Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 371-389, October.
- Tom Doan, 2025. "RATS programs to replicate Jacquier, Polson, Rossi (1994) stochastic volatility," Statistical Software Components RTZ00105, Boston College Department of Economics.
- Chiaki Moriguchi & Emmanuel Saez, 2008. "The Evolution of Income Concentration in Japan, 1886-2005: Evidence from Income Tax Statistics," The Review of Economics and Statistics, MIT Press, vol. 90(4), pages 713-734, November.
- MaCurdy, Thomas E., 1982. "The use of time series processes to model the error structure of earnings in a longitudinal data analysis," Journal of Econometrics, Elsevier, vol. 18(1), pages 83-114, January.
- Costas Meghir & Luigi Pistaferri, 2004.
"Income Variance Dynamics and Heterogeneity,"
Econometrica, Econometric Society, vol. 72(1), pages 1-32, January.
- Costas Meghir & Luigi Pistaferri, 2001. "Income variance dynamics and heterogenity," IFS Working Papers W01/07, Institute for Fiscal Studies.
- Meghir, Costas & Pistaferri, Luigi, 2002. "Income Variance Dynamics and Heterogeneity," CEPR Discussion Papers 3632, C.E.P.R. Discussion Papers.
- Andrew Harvey & Esther Ruiz & Neil Shephard, 1994. "Multivariate Stochastic Variance Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(2), pages 247-264.
- Haruhisa Nishino & Kazuhiko Kakamu & Takashi Oga, 2012. "Bayesian estimation of Persistent Income Inequality using the Lognormal Stochastic Volatility Model," Journal of Income Distribution, Ad libros publications inc., vol. 21(1), pages 88-101, March.
- Erich Battistin & Richard Blundell & Arthur Lewbel, 2009.
"Why Is Consumption More Log Normal than Income? Gibrat's Law Revisited,"
Journal of Political Economy, University of Chicago Press, vol. 117(6), pages 1140-1154, December.
- Erich Battistin & Richard Blundell & Arthur Lewbel, 2007. "Why is Consumption More Log Normal Than Income? Gibrat's Law Revisited," Boston College Working Papers in Economics 671, Boston College Department of Economics.
- Erich Battistin & Richard Blundell & Arthur Lewbel, 2007. "Why is consumption more log normal than income? Gibrat's law revisited," IFS Working Papers W07/08, Institute for Fiscal Studies.
- Piketty, Thomas, 2000. "Theories of persistent inequality and intergenerational mobility," Handbook of Income Distribution, in: A.B. Atkinson & F. Bourguignon (ed.), Handbook of Income Distribution, edition 1, volume 1, chapter 8, pages 429-476, Elsevier.
- Fumio OHTAKE, 2008. "Inequality in Japan," Asian Economic Policy Review, Japan Center for Economic Research, vol. 3(1), pages 87-109, June.
- John Geweke, 1999.
"Using simulation methods for bayesian econometric models: inference, development,and communication,"
Econometric Reviews, Taylor & Francis Journals, vol. 18(1), pages 1-73.
- John Geweke, 1998. "Using simulation methods for Bayesian econometric models: inference, development, and communication," Staff Report 249, Federal Reserve Bank of Minneapolis.
- Ruiz, Esther, 1994. "Quasi-maximum likelihood estimation of stochastic volatility models," Journal of Econometrics, Elsevier, vol. 63(1), pages 289-306, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hikaru Hasegawa & Kazuhiro Ueda, 2016. "Multidimensional inequality for current status of Japanese private companies’ employees," METRON, Springer;Sapienza Università di Roma, vol. 74(3), pages 357-373, December.
- Martin Feldkircher & Kazuhiko Kakamu, 2022.
"How does monetary policy affect income inequality in Japan? Evidence from grouped data,"
Empirical Economics, Springer, vol. 62(5), pages 2307-2327, May.
- Martin Feldkircher & Kazuhiko Kakamu, 2018. "How does monetary policy affect income inequality in Japan? Evidence from grouped data," Papers 1803.08868, arXiv.org, revised Jul 2021.
- Feldkircher, Martin & Kakamu, Kazuhiko, 2018. "How does monetary policy affect income inequality in Japan? Evidence from grouped data," Working Papers in Regional Science 2018/03, WU Vienna University of Economics and Business.
- Sugasawa, Shonosuke & Kobayashi, Genya & Kawakubo, Yuki, 2020. "Estimation and inference for area-wise spatial income distributions from grouped data," Computational Statistics & Data Analysis, Elsevier, vol. 145(C).
- Noriyuki Kunimoto & Kazuhiko Kakamu, 2021. "Is Bitcoin really a currency? A viewpoint of a stochastic volatility model," Papers 2111.15351, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Masakatsu Okubo, 2015. "Earnings Dynamics and Profile Heterogeneity: Estimates from Japanese Panel Data," The Japanese Economic Review, Japanese Economic Association, vol. 66(1), pages 112-146, March.
- Motta, Anderson C. O. & Hotta, Luiz K., 2003. "Exact Maximum Likelihood and Bayesian Estimation of the Stochastic Volatility Model," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 23(2), November.
- Andrea Carriero & Francesco Corsello & Massimiliano Marcellino, 2022.
"The global component of inflation volatility,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 700-721, June.
- Andrea Carriero & Francesco Corsello & Massimiliano Marcellino, 2018. "The global component of inflation volatility," Temi di discussione (Economic working papers) 1170, Bank of Italy, Economic Research and International Relations Area.
- Marcellino, Massimiliano & Carriero, Andrea & Corsello, Francesco, 2019. "The Global Component of Inflation Volatility," CEPR Discussion Papers 13470, C.E.P.R. Discussion Papers.
- Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
- Andersen, Torben G. & Sorensen, Bent E., 1997. "GMM and QML asymptotic standard deviations in stochastic volatility models: Comments on Ruiz (1994)," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 397-403.
- Tu, Anthony H. & Wang, Ming-Chun, 2007. "The innovations of e-mini contracts and futures price volatility components: The empirical investigation of S&P 500 stock index futures," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 17(2), pages 198-211, April.
- Andersen, Torben G & Sorensen, Bent E, 1996.
"GMM Estimation of a Stochastic Volatility Model: A Monte Carlo Study,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 328-352, July.
- Torben G. Andersen & Hyung-Jin Chung & Bent E. Sorensen, "undated". "EMM Estimation of a Stochastic Volatility Model: A Monte Carlo Study," Computing in Economics and Finance 1997 6, Society for Computational Economics.
- Torben G. Andersen & Bent E. Sorensen, 1995. "GMM Estimation of a Stochastic Volatility Model: A Monte Carlo Study," Discussion Papers 95-19, University of Copenhagen. Department of Economics.
- Bauwens, Luc & Veredas, David, 2004.
"The stochastic conditional duration model: a latent variable model for the analysis of financial durations,"
Journal of Econometrics, Elsevier, vol. 119(2), pages 381-412, April.
- BAUWENS, Luc & VEREDAS, David, 2004. "The stochastic conditional duration model: a latent variable model for the analysis of financial durations," LIDAM Reprints CORE 1688, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Aknouche, Abdelhakim, 2013. "Periodic autoregressive stochastic volatility," MPRA Paper 69571, University Library of Munich, Germany, revised 2015.
- Ruiz Ortega, Esther, 1993. "Stochastic volatility versus autoregressive conditional heteroscedasticity," DES - Working Papers. Statistics and Econometrics. WS 5708, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Eymen Errais & Dhikra Bahri, 2016. "Is Standard Deviation a Good Measure of Volatility? the Case of African Markets with Price Limits," Annals of Economics and Finance, Society for AEF, vol. 17(1), pages 145-165, May.
- Font, Begoña, 1998. "Modelización de series temporales financieras. Una recopilación," DES - Documentos de Trabajo. EstadÃstica y EconometrÃa. DS 3664, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- repec:bgu:wpaper:0603 is not listed on IDEAS
- Abdelhakim Aknouche, 2017. "Periodic autoregressive stochastic volatility," Statistical Inference for Stochastic Processes, Springer, vol. 20(2), pages 139-177, July.
- Dominik Bertsche & Robin Braun, 2022.
"Identification of Structural Vector Autoregressions by Stochastic Volatility,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 328-341, January.
- Dominik Bertsche & Robin Braun, 2017. "Identification of Structural Vector Autoregressions by Stochastic Volatility," Working Paper Series of the Department of Economics, University of Konstanz 2017-11, Department of Economics, University of Konstanz.
- Bertsche, Dominik & Braun, Robin, 2018. "Identification of Structural Vector Autoregressions by Stochastic Volatility," VfS Annual Conference 2018 (Freiburg, Breisgau): Digital Economy 181631, Verein für Socialpolitik / German Economic Association.
- Dominik Bertsche & Robin Braun, 2018. "Identification of Structural Vector Autoregressions by Stochastic Volatility," Working Paper Series of the Department of Economics, University of Konstanz 2018-03, Department of Economics, University of Konstanz.
- Dominik Bertsche & Robin Braun, 2020. "Identification of structural vector autoregressions by stochastic volatility," Bank of England working papers 869, Bank of England.
- Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
- Taisuke Nakata & Christopher Tonetti, 2015.
"Small Sample Properties of Bayesian Estimators of Labor Income Processes,"
Journal of Applied Economics, Taylor & Francis Journals, vol. 18(1), pages 121-148, May.
- Taisuke Nakata & Christopher Tonetti, 2015. "Small sample properties of Bayesian estimators of labor income processes," Journal of Applied Economics, Universidad del CEMA, vol. 18, pages 121-148, May.
- Taisuke Nakata & Christopher Tonetti, 2014. "Small Sample Properties of Bayesian Estimators of Labor Income Processes," Finance and Economics Discussion Series 2014-25, Board of Governors of the Federal Reserve System (U.S.).
- Ghysels, E. & Harvey, A. & Renault, E., 1995.
"Stochastic Volatility,"
Papers
95.400, Toulouse - GREMAQ.
- Ghysels, E. & Harvey, A. & Renault, E., 1996. "Stochastic Volatility," Cahiers de recherche 9613, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
- Ghysels, E. & Harvey, A. & Renault, E., 1996. "Stochastic Volatility," Cahiers de recherche 9613, Universite de Montreal, Departement de sciences economiques.
- Eric Ghysels & Andrew Harvey & Eric Renault, 1995. "Stochastic Volatility," CIRANO Working Papers 95s-49, CIRANO.
- GHYSELS, Eric & HARVEY, Andrew & RENAULT, Eric, 1995. "Stochastic Volatility," LIDAM Discussion Papers CORE 1995069, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- BAUWENS, Luc & BOS, Charles S. & VAN DIJK, Herman K., 1999.
"Adaptive polar sampling with an application to a Bayes measure of value-at-risk,"
LIDAM Discussion Papers CORE
1999057, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Bauwens, L. & Bos, C.S. & van Dijk, H.K., 1999. "Adaptive Polar Sampling with an Application to a Bayes Measure of Value-at-Risk," Econometric Institute Research Papers TI 99-082/4, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Luc Bauwens & Charles S. Bos & Herman K. van Dijk, 1999. "Adaptive Polar Sampling with an Application to a Bayes Measure of Value-at-Risk," Tinbergen Institute Discussion Papers 99-082/4, Tinbergen Institute.
- K. Van Dijk & Luc Bauwens & Charles Bos, 2000. "Adaptive Polar Sampling With An Application To A Bayes Measure Of Value-At-Risk," Computing in Economics and Finance 2000 145, Society for Computational Economics.
- Roman Liesenfeld & Robert C. Jung, 2000.
"Stochastic volatility models: conditional normality versus heavy-tailed distributions,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(2), pages 137-160.
- Liesenfeld, Roman & Jung, Robert C., 1997. "Stochastic volatility models: Conditional normality versus heavy tailed distributions," Tübinger Diskussionsbeiträge 103, University of Tübingen, School of Business and Economics.
- Stojanović, Vladica S. & Popović, Biljana Č. & Milovanović, Gradimir V., 2016. "The Split-SV model," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 560-581.
More about this item
Keywords
; ; ; ; ;JEL classification:
- C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- D31 - Microeconomics - - Distribution - - - Personal Income and Wealth Distribution
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:japwor:v:36:y:2015:i:c:p:21-28. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505557 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/eee/japwor/v36y2015icp21-28.html