IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v78y2018icp13-29.html
   My bibliography  Save this article

From Concentration Profiles to Concentration Maps. New tools for the study of loss distributions

Author

Listed:
  • Fontanari, Andrea
  • Cirillo, Pasquale
  • Oosterlee, Cornelis W.

Abstract

We introduce a novel approach to risk management, based on the study of concentration measures of the loss distribution. We show that indices like the Gini index, especially when restricted to the tails by conditioning and truncation, give us an accurate way of assessing the variability of the larger losses – the most relevant ones – and the reliability of common risk management measures like the Expected Shortfall. We first present the Concentration Profile, which is formed by a sequence of truncated Gini indices, to characterize the loss distribution, providing interesting information about tail risk. By combining Concentration Profiles and standard results from utility theory, we develop the Concentration Map, which can be used to assess the risk attached to potential losses on the basis of the risk profile of a user, her beliefs and historical data. Finally, with a sequence of truncated Gini indices as weights for the Expected Shortfall, we define the Concentration Adjusted Expected Shortfall, a measure able to capture additional features of tail risk. Empirical examples and codes for the computation of all the tools are provided.

Suggested Citation

  • Fontanari, Andrea & Cirillo, Pasquale & Oosterlee, Cornelis W., 2018. "From Concentration Profiles to Concentration Maps. New tools for the study of loss distributions," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 13-29.
  • Handle: RePEc:eee:insuma:v:78:y:2018:i:c:p:13-29
    DOI: 10.1016/j.insmatheco.2017.11.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668716304917
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2017.11.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shalit, Haim & Yitzhaki, Shlomo, 1984. "Mean-Gini, Portfolio Theory, and the Pricing of Risky Assets," Journal of Finance, American Finance Association, vol. 39(5), pages 1449-1468, December.
    2. Cirillo, Pasquale, 2013. "Are your data really Pareto distributed?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5947-5962.
    3. Juan Carlos Escanciano & Zaichao Du, 2015. "Backtesting Expected Shortfall: Accounting for Tail Risk," CAEPR Working Papers 2015-001, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    4. Beirlant, Jan & Goegebeur, Yuri, 2004. "Local polynomial maximum likelihood estimation for Pareto-type distributions," Journal of Multivariate Analysis, Elsevier, vol. 89(1), pages 97-118, April.
    5. Hiroshi Konno & Hiroaki Yamazaki, 1991. "Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market," Management Science, INFORMS, vol. 37(5), pages 519-531, May.
    6. Eliazar, Iddo I. & Sokolov, Igor M., 2012. "Measuring statistical evenness: A panoramic overview," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1323-1353.
    7. Haim Shalit & Shlomo Yitzhaki, 2005. "The Mean‐Gini Efficient Portfolio Frontier," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 28(1), pages 59-75, March.
    8. Valérie Chavez-Demoulin & Paul Embrechts & Marius Hofert, 2016. "An Extreme Value Approach for Modeling Operational Risk Losses Depending on Covariates," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 83(3), pages 735-776, September.
    9. Pasquale Cirillo & Nassim Nicholas Taleb, 2016. "Expected shortfall estimation for apparently infinite-mean models of operational risk," Quantitative Finance, Taylor & Francis Journals, vol. 16(10), pages 1485-1494, October.
    10. Chavez-Demoulin, V. & Embrechts, P. & Sardy, S., 2014. "Extreme-quantile tracking for financial time series," Journal of Econometrics, Elsevier, vol. 181(1), pages 44-52.
    11. Gastwirth, Joseph L, 1972. "The Estimation of the Lorenz Curve and Gini Index," The Review of Economics and Statistics, MIT Press, vol. 54(3), pages 306-316, August.
    12. Blakorby, Charles & Donaldson, David, 1980. "Ethical Indices for the Measurement of Poverty," Econometrica, Econometric Society, vol. 48(4), pages 1053-1060, May.
    13. Franco Fiordelisi & Maria-Gaia Soana & Paola Schwizer, 2014. "Reputational losses and operational risk in banking," The European Journal of Finance, Taylor & Francis Journals, vol. 20(2), pages 105-124, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fontanari, Andrea & Taleb, Nassim Nicholas & Cirillo, Pasquale, 2018. "Gini estimation under infinite variance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 256-269.
    2. Fontanari Andrea & Cirillo Pasquale & Oosterlee Cornelis W., 2020. "Lorenz-generated bivariate Archimedean copulas," Dependence Modeling, De Gruyter, vol. 8(1), pages 186-209, January.
    3. Amparo Ba'illo & Javier C'arcamo & Carlos Mora-Corral, 2021. "Extremal points of Lorenz curves and applications to inequality analysis," Papers 2103.03286, arXiv.org.
    4. Fontanari Andrea & Cirillo Pasquale & Oosterlee Cornelis W., 2020. "Lorenz-generated bivariate Archimedean copulas," Dependence Modeling, De Gruyter, vol. 8(1), pages 186-209, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shlomo Yitzhaki, 2003. "Gini’s Mean difference: a superior measure of variability for non-normal distributions," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(2), pages 285-316.
    2. Ran Ji & Miguel A. Lejeune & Srinivas Y. Prasad, 2017. "Properties, formulations, and algorithms for portfolio optimization using Mean-Gini criteria," Annals of Operations Research, Springer, vol. 248(1), pages 305-343, January.
    3. Vladimir Hlasny, 2021. "Parametric representation of the top of income distributions: Options, historical evidence, and model selection," Journal of Economic Surveys, Wiley Blackwell, vol. 35(4), pages 1217-1256, September.
    4. Fontanari Andrea & Cirillo Pasquale & Oosterlee Cornelis W., 2020. "Lorenz-generated bivariate Archimedean copulas," Dependence Modeling, De Gruyter, vol. 8(1), pages 186-209, January.
    5. Weidong Lin & Jose Olmo & Abderrahim Taamouti, 2022. "Portfolio Selection Under Systemic Risk," Working Papers 202208, University of Liverpool, Department of Economics.
    6. Doron Nisani, 2019. "Ranking Investments Using the Lorenz Curve," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(1), pages 1-9, March.
    7. Schechtman, Edna & Yitzhaki, Shlomo, 1985. "A Measure of Association Based on Gini's Mean Difference," Working Papers 232621, Hebrew University of Jerusalem, Center for Agricultural Economic Research.
    8. Di Lascio, F. Marta L. & Giammusso, Davide & Puccetti, Giovanni, 2018. "A clustering approach and a rule of thumb for risk aggregation," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 236-248.
    9. León, Angel & Navarro, Lluís & Nieto, Belén, 2019. "Screening rules and portfolio performance," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 642-662.
    10. Miguel A. Lejeune & John Turner, 2019. "Planning Online Advertising Using Gini Indices," Operations Research, INFORMS, vol. 67(5), pages 1222-1245, September.
    11. Lu Wei & Jianping Li & Xiaoqian Zhu, 2018. "Operational Loss Data Collection: A Literature Review," Annals of Data Science, Springer, vol. 5(3), pages 313-337, September.
    12. Davide Lauria & W. Brent Lindquist & Svetlozar T. Rachev, 2023. "Enhancing CVaR portfolio optimisation performance with GAM factor models," Papers 2401.00188, arXiv.org.
    13. Zhenlong Jiang & Ran Ji & Kuo-Chu Chang, 2020. "A Machine Learning Integrated Portfolio Rebalance Framework with Risk-Aversion Adjustment," JRFM, MDPI, vol. 13(7), pages 1-20, July.
    14. Aleš Kresta, 2015. "Application of Performance Ratios in Portfolio Optimization," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 63(6), pages 1969-1977.
    15. Pavlo Blavatskyy, 2023. "Expected return—expected loss approach to optimal portfolio investment," Theory and Decision, Springer, vol. 94(1), pages 63-81, January.
    16. Sergio Ortobelli Lozza, 2001. "The classification of parametric choices under uncertainty: analysis of the portfolio choice problem," Theory and Decision, Springer, vol. 51(2), pages 297-328, December.
    17. Maria-Teresa Bosch-Badia & Joan Montllor-Serrats & Maria-Antonia Tarrazon-Rodon, 2017. "Analysing assets’ performance inside a portfolio: From crossed beta to the net risk premium ratio," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1270251-127, January.
    18. Amparo Ba'illo & Javier C'arcamo & Carlos Mora-Corral, 2021. "Extremal points of Lorenz curves and applications to inequality analysis," Papers 2103.03286, arXiv.org.
    19. Martin Eling & Kwangmin Jung, 2022. "Heterogeneity in cyber loss severity and its impact on cyber risk measurement," Risk Management, Palgrave Macmillan, vol. 24(4), pages 273-297, December.
    20. José Claudio Isaias & Pedro Paulo Balestrassi & Guilherme Augusto Barucke Marcondes & Wesley Vieira da Silva & Carlos Henrique Pereira Mello & Claudimar Pereira da Veiga, 2021. "Project Portfolio Selection of Solar Energy by Photovoltaic Generation Using Gini-CAPM Multi-Criteria and Considering ROI Covariations," Energies, MDPI, vol. 14(24), pages 1-21, December.

    More about this item

    Keywords

    Concentration measures; Value-at-Risk; Expected Shortfall; Concentration Profile; Gini index;
    All these keywords.

    JEL classification:

    • C43 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Index Numbers and Aggregation
    • C46 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Specific Distributions
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:78:y:2018:i:c:p:13-29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.