IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v50y2012i1p43-49.html
   My bibliography  Save this article

On the invariant properties of notions of positive dependence and copulas under increasing transformations

Author

Listed:
  • Cai, Jun
  • Wei, Wei

Abstract

Notions of positive dependence and copulas play important roles in modeling dependent risks. The invariant properties of notions of positive dependence and copulas under increasing transformations are often used in the studies of economics, finance, insurance and many other fields. In this paper, we examine the notions of the conditionally increasing (CI), the conditionally increasing in sequence (CIS), the positive dependence through the stochastic ordering (PDS), and the positive dependence through the upper orthant ordering (PDUO). We first use counterexamples to show that the statements in Theorem 3.10.19 of Müller and Stoyan (2002) about the invariant properties of CIS and CI under increasing transformations are not true. We then prove that the invariant properties of CIS and CI hold under strictly increasing transformations. Furthermore, we give rigorous proofs for the invariant properties of PDS and PDUO under increasing transformations. These invariant properties enable us to show that a continuous random vector is PDS (PDUO) if and only of its copula is PDS (PDUO). In addition, using the properties of generalized left-continuous and right-continuous inverse functions, we give a rigorous proof for the invariant property of copulas under increasing transformations on the components of any random vector. This result generalizes Proposition 4.7.4 of Denuit et al. (2005) and Proposition 5.6. of McNeil et al. (2005).

Suggested Citation

  • Cai, Jun & Wei, Wei, 2012. "On the invariant properties of notions of positive dependence and copulas under increasing transformations," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 43-49.
  • Handle: RePEc:eee:insuma:v:50:y:2012:i:1:p:43-49
    DOI: 10.1016/j.insmatheco.2011.10.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668711001090
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2011.10.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Müller, Alfred & Scarsini, Marco, 2005. "Archimedean copulæ and positive dependence," Journal of Multivariate Analysis, Elsevier, vol. 93(2), pages 434-445, April.
    2. Fernández-Ponce, J.M. & Pellerey, F. & Rodríguez-Griñolo, M.R., 2011. "A characterization of the multivariate excess wealth ordering," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 410-417.
    3. Colangelo, Antonio & Scarsini, Marco & Shaked, Moshe, 2005. "Some notions of multivariate positive dependence," Insurance: Mathematics and Economics, Elsevier, vol. 37(1), pages 13-26, August.
    4. Block, Henry W. & Savits, Thomas H. & Shaked, Moshe, 1985. "A concept of negative dependence using stochastic ordering," Statistics & Probability Letters, Elsevier, vol. 3(2), pages 81-86, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dhaene, Jan & Laeven, Roger J.A. & Zhang, Yiying, 2022. "Systemic risk: Conditional distortion risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 126-145.
    2. Ortega-Jiménez, Patricia & Pellerey, Franco & Sordo, Miguel A. & Suárez-Llorens, Alfonso, 2024. "Probability equivalent level for CoVaR and VaR," Insurance: Mathematics and Economics, Elsevier, vol. 115(C), pages 22-35.
    3. Zalzadeh, Saeed & Pellerey, Franco, 2016. "A positive dependence notion based on componentwise unimodality of copulas," Statistics & Probability Letters, Elsevier, vol. 112(C), pages 51-57.
    4. Zhang, Yiying, 2024. "Stochastic orders and distortion risk contribution ratio measures," Insurance: Mathematics and Economics, Elsevier, vol. 118(C), pages 104-122.
    5. Rui Fang & Xiaohu Li, 2018. "Some Results on Measures of Interaction between Paired Risks," Risks, MDPI, vol. 6(3), pages 1-15, August.
    6. Yiting Fan & Rui Fang, 2022. "Some Results on Measures of Interaction among Risks," Mathematics, MDPI, vol. 10(19), pages 1-19, October.
    7. Ortega-Jiménez, P. & Sordo, M.A. & Suárez-Llorens, A., 2021. "Stochastic orders and multivariate measures of risk contagion," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 199-207.
    8. Chen Li & Xiaohu Li, 2018. "Preservation of increasing convex/concave order under the formation of parallel/series system of dependent components," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(4), pages 445-464, May.
    9. Sordo, M.A. & Bello, A.J. & Suárez-Llorens, A., 2018. "Stochastic orders and co-risk measures under positive dependence," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 105-113.
    10. Patricia Ortega-Jiménez & Miguel A. Sordo & Alfonso Suárez-Llorens, 2021. "Stochastic Comparisons of Some Distances between Random Variables," Mathematics, MDPI, vol. 9(9), pages 1-14, April.
    11. Sordo, Miguel A. & Suárez-Llorens, Alfonso & Bello, Alfonso J., 2015. "Comparison of conditional distributions in portfolios of dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 62-69.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ortega-Jiménez, P. & Sordo, M.A. & Suárez-Llorens, A., 2021. "Stochastic orders and multivariate measures of risk contagion," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 199-207.
    2. Sordo, Miguel A. & Suárez-Llorens, Alfonso & Bello, Alfonso J., 2015. "Comparison of conditional distributions in portfolios of dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 62-69.
    3. Cai, Jun & Wei, Wei, 2012. "Optimal reinsurance with positively dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 57-63.
    4. Longobardi, Maria & Pellerey, Franco, 2019. "On the role of dependence in residual lifetimes," Statistics & Probability Letters, Elsevier, vol. 153(C), pages 56-64.
    5. Gijbels, Irène & Sznajder, Dominik, 2013. "Testing tail monotonicity by constrained copula estimation," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 338-351.
    6. Colangelo Antonio, 2005. "Multivariate hazard orderings of discrete random vectors," Economics and Quantitative Methods qf05010, Department of Economics, University of Insubria.
    7. Ansari Jonathan & Rüschendorf Ludger, 2021. "Sklar’s theorem, copula products, and ordering results in factor models," Dependence Modeling, De Gruyter, vol. 9(1), pages 267-306, January.
    8. Laureano Escudero & Eva-María Ortega, 2009. "How retention levels influence the variability of the total risk under reinsurance," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(1), pages 139-157, July.
    9. Christian Genest & Johanna Nešlehová & Johanna Ziegel, 2011. "Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 223-256, August.
    10. Beggs Alan W., 2013. "Dependence and Uniqueness in Bayesian Games," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 13(1), pages 1-25, May.
    11. Lu, Zhiyi & Meng, Shengwang & Liu, Leping & Han, Ziqi, 2018. "Optimal insurance design under background risk with dependence," Insurance: Mathematics and Economics, Elsevier, vol. 80(C), pages 15-28.
    12. Arnold Polanski & Evarist Stoja & Ching‐Wai (Jeremy) Chiu, 2021. "Tail risk interdependence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(4), pages 5499-5511, October.
    13. Li, Chen & Li, Xiaohu, 2021. "On stochastic dependence in residual lifetime and inactivity time with some applications," Statistics & Probability Letters, Elsevier, vol. 177(C).
    14. Stöber, Jakob & Joe, Harry & Czado, Claudia, 2013. "Simplified pair copula constructions—Limitations and extensions," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 101-118.
    15. Taizhong Hu & Alfred Müller & Marco Scarsini, 2002. "Some Counterexamples in Positive Dependence," ICER Working Papers - Applied Mathematics Series 28-2003, ICER - International Centre for Economic Research, revised Jul 2003.
    16. Steffen Nico & Dickhaus Thorsten, 2020. "Optimizing effective numbers of tests by vine copula modeling," Dependence Modeling, De Gruyter, vol. 8(1), pages 172-185, January.
    17. Tong Li & Bingyu Zhang, 2015. "Affiliation and Entry in First-Price Auctions with Heterogeneous Bidders: An Analysis of Merger Effects," American Economic Journal: Microeconomics, American Economic Association, vol. 7(2), pages 188-214, May.
    18. Alexander Saak, 2007. "A note on the value of public information in monopoly," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 33(2), pages 369-379, November.
    19. Diwakar Gupta & Yigal Gerchak, 2002. "Quantifying Operational Synergies in a Merger/Acquisition," Management Science, INFORMS, vol. 48(4), pages 517-533, April.
    20. Dean Fantazzini, 2011. "Analysis of multidimensional probability distributions with copula functions," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 22(2), pages 98-134.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:50:y:2012:i:1:p:43-49. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.