IDEAS home Printed from
   My bibliography  Save this article

Optimal non-proportional reinsurance control


  • Hipp, Christian
  • Taksar, Michael


This paper deals with the problem of ruin probability minimization under various investment control and reinsurance schemes. We first look at the minimization of ruin probabilities in the models in which the surplus process is a continuous diffusion process in which we employ stochastic control to find the optimal policies for reinsurance and investment. We then focus on the case in which the surplus process is modeled via a classical Lundberg process, i.e. the claims process is compound Poisson. There, the optimal reinsurance policy is derived from the Hamilton-Jacobi-Bellman equation.

Suggested Citation

  • Hipp, Christian & Taksar, Michael, 2010. "Optimal non-proportional reinsurance control," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 246-254, October.
  • Handle: RePEc:eee:insuma:v:47:y:2010:i:2:p:246-254

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Hipp, Christian & Vogt, Michael, 2003. "Optimal Dynamic XL Reinsurance," ASTIN Bulletin: The Journal of the International Actuarial Association, Cambridge University Press, vol. 33(02), pages 193-207, November.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Jang, Bong-Gyu & Kim, Kyeong Tae, 2015. "Optimal reinsurance and asset allocation under regime switching," Journal of Banking & Finance, Elsevier, vol. 56(C), pages 37-47.
    2. Zhang, Xin & Meng, Hui & Zeng, Yan, 2016. "Optimal investment and reinsurance strategies for insurers with generalized mean–variance premium principle and no-short selling," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 125-132.
    3. Zhou, Ming & Yuen, Kam C., 2012. "Optimal reinsurance and dividend for a diffusion model with capital injection: Variance premium principle," Economic Modelling, Elsevier, vol. 29(2), pages 198-207.
    4. Meng, Hui & Zhou, Ming & Siu, Tak Kuen, 2016. "Optimal reinsurance policies with two reinsurers in continuous time," Economic Modelling, Elsevier, vol. 59(C), pages 182-195.
    5. Julie Thøgersen, 2016. "Optimal Premium as a Function of the Deductible: Customer Analysis and Portfolio Characteristics," Risks, MDPI, Open Access Journal, vol. 4(4), pages 1-19, November.
    6. Taksar, Michael & Zeng, Xudong, 2011. "Optimal non-proportional reinsurance control and stochastic differential games," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 64-71, January.
    7. Nabil Kazi-Tani, 2018. "Inf-Convolution of Choquet Integrals and Applications in Optimal Risk Transfer," Working Papers hal-01742629, HAL.
    8. repec:spr:mathme:v:85:y:2017:i:2:d:10.1007_s00186-016-0559-8 is not listed on IDEAS


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:47:y:2010:i:2:p:246-254. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.