IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v120y2025icp51-60.html
   My bibliography  Save this article

Automobile Insurance Fraud Detection Based on PSO-XGBoost Model and Interpretable Machine Learning Method

Author

Listed:
  • Ding, Ning
  • Ruan, Xiao
  • Wang, Hao
  • Liu, Yuan

Abstract

Automobile insurance fraud has become a critical concern for the insurance industry, posing significant threats to socio-economic stability and commercial interests. To tackle these challenges, this paper proposes a PSO-XGBoost fraud detection framework and uses explainable artificial intelligence to interpret the predictions. The framework combines an XGBoost classifier with the particle swarm optimization algorithm and is validated through a comparative evaluation against other models. Traditional methods, including SVM, Naive Bayes, Logistic Regression, and BP Neural Network, demonstrate moderate accuracy, ranging from 54.1% to 68.6%, while more advanced models like Random Forest reach up to 78.4%. Compared to the standard XGBoost, the PSO-optimized model achieves 3% superior accuracy, achieving an impressive 95% success rate. Moreover, SHAP is used to extract and visually depict the contribution of each feature to the model's predictions. It turns out that the policyholder's claim amount is the most significant factor in detecting automobile insurance fraud, with other factors such as vehicle type, responsible party, and the insurer's age also considerably influencing the prediction performance. This paper therefore proves that combining the PSO-XGBoost model with SHAP approach can substantially improve the early warning and prevention of automobile insurance fraud.

Suggested Citation

  • Ding, Ning & Ruan, Xiao & Wang, Hao & Liu, Yuan, 2025. "Automobile Insurance Fraud Detection Based on PSO-XGBoost Model and Interpretable Machine Learning Method," Insurance: Mathematics and Economics, Elsevier, vol. 120(C), pages 51-60.
  • Handle: RePEc:eee:insuma:v:120:y:2025:i:c:p:51-60
    DOI: 10.1016/j.insmatheco.2024.11.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668724001112
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2024.11.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dionne, Georges & Michaud, Pierre-Carl & Pinquet, Jean, 2013. "A review of recent theoretical and empirical analyses of asymmetric information in road safety and automobile insurance," Research in Transportation Economics, Elsevier, vol. 43(1), pages 85-97.
    2. Véronique Van Vlasselaer & Tina Eliassi-Rad & Leman Akoglu & Monique Snoeck & Bart Baesens, 2017. "GOTCHA! Network-Based Fraud Detection for Social Security Fraud," Management Science, INFORMS, vol. 63(9), pages 3090-3110, September.
    3. Yankol-Schalck, Meryem, 2022. "The value of cross-data set analysis for automobile insurance fraud detection," Research in International Business and Finance, Elsevier, vol. 63(C).
    4. Jörn Debener & Volker Heinke & Johannes Kriebel, 2023. "Detecting insurance fraud using supervised and unsupervised machine learning," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 90(3), pages 743-768, September.
    5. Ning Ding & Xinnan Zhang & Yiming Zhai & Chenglong Li, 2021. "Risk assessment of VAT invoice crime levels of companies based on DFPSVM: a case study in China," Risk Management, Palgrave Macmillan, vol. 23(1), pages 75-96, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Deshen & Chen, Bintong & Chen, Jing, 2019. "Credit card fraud detection strategies with consumer incentives," Omega, Elsevier, vol. 88(C), pages 179-195.
    2. Gang Kou & Yang Lu, 2025. "FinTech: a literature review of emerging financial technologies and applications," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 11(1), pages 1-34, December.
    3. Alois Geyer & Daniela Kremslehner & Alexander Muermann, 2020. "Asymmetric Information in Automobile Insurance: Evidence From Driving Behavior," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 87(4), pages 969-995, December.
    4. Jaime D. Acevedo-Viloria & Luisa Roa & Soji Adeshina & Cesar Charalla Olazo & Andr'es Rodr'iguez-Rey & Jose Alberto Ramos & Alejandro Correa-Bahnsen, 2021. "Relational Graph Neural Networks for Fraud Detection in a Super-App environment," Papers 2107.13673, arXiv.org, revised Jul 2021.
    5. Ciprian MatiÅŸ & Eugenia MatiÅŸ, 2013. "Asymmetric Information In Insurance Field: Some General Considerations," Annales Universitatis Apulensis Series Oeconomica, Faculty of Sciences, "1 Decembrie 1918" University, Alba Iulia, vol. 1(15), pages 1-17.
    6. Yankol-Schalck, Meryem, 2022. "The value of cross-data set analysis for automobile insurance fraud detection," Research in International Business and Finance, Elsevier, vol. 63(C).
    7. Huirong Zhang & Zhenyu Zhang & Lixin Zhou & Shuangsheng Wu, 2021. "Case-Based Reasoning for Hidden Property Analysis of Judgment Debtors," Mathematics, MDPI, vol. 9(13), pages 1-17, July.
    8. Lina Bouayad & Balaji Padmanabhan & Kaushal Chari, 2019. "Audit Policies Under the Sentinel Effect: Deterrence-Driven Algorithms," Information Systems Research, INFORMS, vol. 30(2), pages 466-485, June.
    9. Farbmacher, Helmut & Löw, Leander & Spindler, Martin, 2022. "An explainable attention network for fraud detection in claims management," Journal of Econometrics, Elsevier, vol. 228(2), pages 244-258.
    10. Höppner, Sebastiaan & Baesens, Bart & Verbeke, Wouter & Verdonck, Tim, 2022. "Instance-dependent cost-sensitive learning for detecting transfer fraud," European Journal of Operational Research, Elsevier, vol. 297(1), pages 291-300.
    11. Dionne, Georges, 2012. "The empirical measure of information problems with emphasis on insurance fraud and dynamic data," Working Papers 12-10, HEC Montreal, Canada Research Chair in Risk Management.
    12. Chao, Xiangrui & Ran, Qin & Chen, Jia & Li, Tie & Qian, Qian & Ergu, Daji, 2022. "Regulatory technology (Reg-Tech) in financial stability supervision: Taxonomy, key methods, applications and future directions," International Review of Financial Analysis, Elsevier, vol. 80(C).
    13. Dionne, Georges & Harrington, Scott, 2017. "Insurance and Insurance Markets," Working Papers 17-2, HEC Montreal, Canada Research Chair in Risk Management.
    14. Georges Dionne & Ying Liu, 2021. "Effects of Insurance Incentives on Road Safety: Evidence from a Natural Experiment in China," Scandinavian Journal of Economics, Wiley Blackwell, vol. 123(2), pages 453-477, April.
    15. Emilio Carrizosa & Cristina Molero-Río & Dolores Romero Morales, 2021. "Mathematical optimization in classification and regression trees," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 5-33, April.
    16. Milosavljević, Miloš & Radovanović, Sandro & Delibašić, Boris, 2023. "What drives the performance of tax administrations? Evidence from selected european countries," Economic Modelling, Elsevier, vol. 121(C).
    17. Yang Qiao & Chou-Wen Wang & Wenjun Zhu, 2024. "Machine learning in long-term mortality forecasting," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 49(2), pages 340-362, April.
    18. Óskarsdóttir, María & Bravo, Cristián, 2021. "Multilayer network analysis for improved credit risk prediction," Omega, Elsevier, vol. 105(C).
    19. Imen Karaa, 2018. "Moral Hazard and Learning in the Tunisian Automobile Insurance Market: New Evidence from Dynamic Data," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 43(3), pages 560-589, July.
    20. Evangelos Liaras & Michail Nerantzidis & Antonios Alexandridis, 2024. "Machine learning in accounting and finance research: a literature review," Review of Quantitative Finance and Accounting, Springer, vol. 63(4), pages 1431-1471, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:120:y:2025:i:c:p:51-60. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.