IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v19y2025i1s175115772500001x.html
   My bibliography  Save this article

Study on the predictability of new topics of scholars: A machine learning-based approach using knowledge networks

Author

Listed:
  • Wu, Zhixiang
  • Jiang, Hucheng
  • Xiao, Lianjie
  • Wang, Hao
  • Mao, Jin

Abstract

Scholars continuously explore new research topics to drive personal academic achievements. While factors influencing topic selection exist, the predictability of scholars’ choices regarding new topics is not yet fully understood. To bridge the gap, this study investigates the predictability of new topics of scholars (NTS). The research task is transformed into a binary classification, predicting whether NTS that appear in the disciplinary knowledge network will be adopted by a scholar in the future. Using PubMed Knowledge Graph (PKG) as the data source, over 17,000 local knowledge networks (LKNs) of individual scholars are constructed, along with a global knowledge network (GKN) of all the scholars in the database. Sixteen features of knowledge network topology and candidate topics are extracted, and seven machine learning algorithms are applied. Our large-scale experiments show that the best prediction model achieves an F1 score of 86.49%. Shapley values provide more interpretable results. A 1-year observation window appears to be sufficient for making predictions. Novel topics and young scholars exhibit good predictability. Our findings provide profound insights into the predictability of scholars' topic selection and offer practical implications for future in-depth studies.

Suggested Citation

  • Wu, Zhixiang & Jiang, Hucheng & Xiao, Lianjie & Wang, Hao & Mao, Jin, 2025. "Study on the predictability of new topics of scholars: A machine learning-based approach using knowledge networks," Journal of Informetrics, Elsevier, vol. 19(1).
  • Handle: RePEc:eee:infome:v:19:y:2025:i:1:s175115772500001x
    DOI: 10.1016/j.joi.2025.101637
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S175115772500001X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2025.101637?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. An Zeng & Zhesi Shen & Jianlin Zhou & Ying Fan & Zengru Di & Yougui Wang & H. Eugene Stanley & Shlomo Havlin, 2019. "Increasing trend of scientists to switch between topics," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    2. Zhenyu Yang & Wenyu Zhang & Zhimin Wang & Xiaoling Huang, 2024. "A deep learning-based method for predicting the emerging degree of research topics using emerging index," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(7), pages 4021-4042, July.
    3. Fahimeh Ghasemian & Kamran Zamanifar & Nasser Ghasem-Aqaee & Noshir Contractor, 2016. "Toward a better scientific collaboration success prediction model through the feature space expansion," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(2), pages 777-801, August.
    4. Yueran Duan & Qing Guan, 2021. "Predicting potential knowledge convergence of solar energy: bibliometric analysis based on link prediction model," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 3749-3773, May.
    5. Shiyun Wang & Yaxue Ma & Jin Mao & Yun Bai & Zhentao Liang & Gang Li, 2023. "Quantifying scientific breakthroughs by a novel disruption indicator based on knowledge entities," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(2), pages 150-167, February.
    6. Tao Jia & Dashun Wang & Boleslaw K. Szymanski, 2017. "Quantifying patterns of research-interest evolution," Nature Human Behaviour, Nature, vol. 1(4), pages 1-7, April.
    7. Ikujiro Nonaka, 1994. "A Dynamic Theory of Organizational Knowledge Creation," Organization Science, INFORMS, vol. 5(1), pages 14-37, February.
    8. Abramo, Giovanni & Cicero, Tindaro & D’Angelo, Ciriaco Andrea, 2015. "Should the research performance of scientists be distinguished by gender?," Journal of Informetrics, Elsevier, vol. 9(1), pages 25-38.
    9. Pierre Azoulay & Christian Fons-Rosen & Joshua S. Graff Zivin, 2019. "Does Science Advance One Funeral at a Time?," American Economic Review, American Economic Association, vol. 109(8), pages 2889-2920, August.
    10. Huang, Shengzhi & Huang, Yong & Bu, Yi & Luo, Zhuoran & Lu, Wei, 2023. "Disclosing the interactive mechanism behind scientists’ topic selection behavior from the perspective of the productivity and the impact," Journal of Informetrics, Elsevier, vol. 17(2).
    11. Madeline K. Kneeland & Melissa A. Schilling & Barak S. Aharonson, 2020. "Exploring Uncharted Territory: Knowledge Search Processes in the Origination of Outlier Innovation," Organization Science, INFORMS, vol. 31(3), pages 535-557, May.
    12. Behrouzi, Saman & Shafaeipour Sarmoor, Zahra & Hajsadeghi, Khosrow & Kavousi, Kaveh, 2020. "Predicting scientific research trends based on link prediction in keyword networks," Journal of Informetrics, Elsevier, vol. 14(4).
    13. Ke, Qing, 2020. "An analysis of the evolution of science-technology linkage in biomedicine," Journal of Informetrics, Elsevier, vol. 14(4).
    14. Hei-Chia Wang & Tzu-Ting Hsu & Yunita Sari, 2019. "Personal research idea recommendation using research trends and a hierarchical topic model," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1385-1406, December.
    15. Wenjie Wei & Hongxu Liu & Zhuanlan Sun, 2022. "Cover papers of top journals are reliable source for emerging topics detection: a machine learning based prediction framework," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(8), pages 4315-4333, August.
    16. Xie, Zheng, 2020. "Predicting publication productivity for researchers: A piecewise Poisson model," Journal of Informetrics, Elsevier, vol. 14(3).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baicun Li & Aruhan Bai, 2025. "The influence of grant renewal on research content: evidence from NIH-funded PIs," Scientometrics, Springer;Akadémiai Kiadó, vol. 130(5), pages 2617-2638, May.
    2. Katchanov, Yurij L. & Markova, Yulia V., 2022. "Dynamics of senses of new physics discourse: Co-keywords analysis," Journal of Informetrics, Elsevier, vol. 16(1).
    3. Feng Shi & James Evans, 2023. "Surprising combinations of research contents and contexts are related to impact and emerge with scientific outsiders from distant disciplines," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Cui, Haochuan & Zeng, An & Fan, Ying & Di, Zengru, 2021. "Quantifying the impact of a teamwork publication," Journal of Informetrics, Elsevier, vol. 15(4).
    5. Ziyan Zhang & Junyan Zhang & Pushi Wang, 2024. "Measurement of disruptive innovation and its validity based on improved disruption index," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(11), pages 6477-6531, November.
    6. Guo, Liying & Wang, Yang & Li, Meiling, 2024. "Exploration, exploitation and funding success: Evidence from junior scientists supported by the Chinese Young Scientists Fund," Journal of Informetrics, Elsevier, vol. 18(2).
    7. Liang, Zhentao & Ba, Zhichao & Mao, Jin & Li, Gang, 2023. "Research complexity increases with scientists’ academic age: Evidence from library and information science," Journal of Informetrics, Elsevier, vol. 17(1).
    8. Khanna, Rajat, 2021. "Aftermath of a tragedy: A star's death and coauthors’ subsequent productivity," Research Policy, Elsevier, vol. 50(2).
    9. repec:osf:socarx:ep5bx_v1 is not listed on IDEAS
    10. Rajat Khanna & Isin Guler, 2022. "Degree assortativity in collaboration networks and invention performance," Strategic Management Journal, Wiley Blackwell, vol. 43(7), pages 1402-1430, July.
    11. Zhang, Lin & Qi, Fan & Sivertsen, Gunnar & Liang, Liming & Campbell, David, 2023. "Gender differences in the patterns and consequences of changing specialization in scientific careers," SocArXiv ep5bx, Center for Open Science.
    12. Yu, Xiaoyao & Szymanski, Boleslaw K. & Jia, Tao, 2021. "Become a better you: Correlation between the change of research direction and the change of scientific performance," Journal of Informetrics, Elsevier, vol. 15(3).
    13. Li, Meiling & Wang, Yang & Du, Haifeng & Bai, Aruhan, 2024. "Motivating innovation: The impact of prestigious talent funding on junior scientists," Research Policy, Elsevier, vol. 53(9).
    14. Paul Hunermund & Ann Hipp, 2024. "Inventor Mobility After the Fall of the Berlin Wall," Papers 2409.01861, arXiv.org, revised Jan 2025.
    15. Chao Yu & Chuhan Wang & Tongyang Zhang & Yi Bu & Jian Xu, 2024. "Analyzing research diversity of scholars based on multi-dimensional calculation of knowledge entities," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(11), pages 7329-7358, November.
    16. Jianhua Hou & Bili Zheng & Hao Li & Wenjing Li, 2025. "Evolution and impact of the science of science: from theoretical analysis to digital-AI driven research," Palgrave Communications, Palgrave Macmillan, vol. 12(1), pages 1-9, December.
    17. Daria Gerashchenko, 2024. "Research topic switch and its relation to appointment as university leader," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(3), pages 1841-1862, March.
    18. Zhou, Yuhao & Gong, Faming & Wang, Yanwei & Wang, Ruijie & Zeng, An, 2025. "Fusing structural and temporal information in citation networks for identifying milestone works," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).
    19. Ma, Yinghong & Song, Le & Ji, Zhaoxun & Wang, Qian & Yu, Qinglin, 2020. "Scholar’s career switch adhesive with research topics: An evidence from China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    20. Ba, Zhichao & Liang, Zhentao, 2021. "A novel approach to measuring science-technology linkage: From the perspective of knowledge network coupling," Journal of Informetrics, Elsevier, vol. 15(3).
    21. Lu Liu & Benjamin F. Jones & Brian Uzzi & Dashun Wang, 2023. "Data, measurement and empirical methods in the science of science," Nature Human Behaviour, Nature, vol. 7(7), pages 1046-1058, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:19:y:2025:i:1:s175115772500001x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.