IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v12y2018i4p1015-1030.html
   My bibliography  Save this article

Overcitation and overrepresentation of review papers in the most cited papers

Author

Listed:
  • Miranda, Ruben
  • Garcia-Carpintero, Esther

Abstract

Review papers tend to be cited more frequently than regular research articles. This fact, together with the continuous increase of the share of reviews in scientific literature, can have important consequences for the measurement of individuals’ research output, usually based on citation analysis. However, studies evaluating the differences in citations of review papers compared to original research articles are almost non-existing in the literature. This paper presents a thorough analysis of the overcitation and overrepresentation of review papers in the most cited papers of the 35 largest subject categories in Science Citation Index-Expanded. Results indicate the average citations received by reviews depends largely on the research area considered, varying from 1.34 to 6.74 times the citations received by original research articles (average value is 2.95). Correlated with this overcitation, there is an important overrepresentation of reviews in the most cited papers, this overrepresentation being greater when the most highly cited papers are considered, i.e. 0.05% and 0.1% most cited papers, where the share of reviews have increased from 16 to 18% in 1990 to around 40% in 2010. Interestingly, the overcitation and overrepresentation in the most cited papers is more important in the areas with the lowest shares of reviews in total publications.

Suggested Citation

  • Miranda, Ruben & Garcia-Carpintero, Esther, 2018. "Overcitation and overrepresentation of review papers in the most cited papers," Journal of Informetrics, Elsevier, vol. 12(4), pages 1015-1030.
  • Handle: RePEc:eee:infome:v:12:y:2018:i:4:p:1015-1030
    DOI: 10.1016/j.joi.2018.08.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157718300555
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2018.08.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christian Lachance & Steve Poirier & Vincent Larivière, 2014. "The kiss of death? The effect of being cited in a review on subsequent citations," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(7), pages 1501-1505, July.
    2. Dag W. Aksnes, 2006. "Citation rates and perceptions of scientific contribution," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(2), pages 169-185, January.
    3. Robert Colebunders & Chris Kenyon & Ronald Rousseau, 2014. "Increase in numbers and proportions of review articles in Tropical Medicine, Infectious Diseases, and oncology," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(1), pages 201-205, January.
    4. Ale Ebrahim, Nader & Salehi, Hadi & Embi, Mohamed Amin & Habibi Tanha, Farid & Gholizadeh, Hossein & Motahar, Seyed Mohammad & Ordi, Ali, 2013. "Effective Strategies for Increasing Citation Frequency," MPRA Paper 50919, University Library of Munich, Germany, revised 12 Oct 2013.
    5. Waltman, Ludo, 2016. "A review of the literature on citation impact indicators," Journal of Informetrics, Elsevier, vol. 10(2), pages 365-391.
    6. Paul Donner, 2017. "Document type assignment accuracy in the journal citation index data of Web of Science," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 219-236, October.
    7. Moed, Henk F., 2010. "Measuring contextual citation impact of scientific journals," Journal of Informetrics, Elsevier, vol. 4(3), pages 265-277.
    8. Anne-Wil Harzing, 2013. "Document categories in the ISI Web of Knowledge: Misunderstanding the Social Sciences?," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(1), pages 23-34, January.
    9. Vanclay, Jerome K., 2013. "Factors affecting citation rates in environmental science," Journal of Informetrics, Elsevier, vol. 7(2), pages 265-271.
    10. Dag W Aksnes, 2003. "Characteristics of highly cited papers," Research Evaluation, Oxford University Press, vol. 12(3), pages 159-170, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Petr Praus, 2023. "Empirical relationship between the number of review and research articles," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(4), pages 2201-2209, April.
    2. Yves Fassin, 2021. "The impact of review articles in management and economics journal rankings and metrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9623-9632, December.
    3. Hu, Guangyuan & Ni, Rong & Tang, Li, 2022. "Do international nonstop flights foster influential research? Evidence from Sino-US scientific collaboration," Journal of Informetrics, Elsevier, vol. 16(4).
    4. Kaile Gong & Juan Xie & Ying Cheng & Vincent Larivière & Cassidy R. Sugimoto, 2019. "The citation advantage of foreign language references for Chinese social science papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(3), pages 1439-1460, September.
    5. Clemens Blümel & Alexander Schniedermann, 2020. "Studying review articles in scientometrics and beyond: a research agenda," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 711-728, July.
    6. Sun, Zhuanlan & Liu, Sheng & Li, Yiwei & Ma, Chao, 2023. "Expedited editorial decision in COVID-19 pandemic," Journal of Informetrics, Elsevier, vol. 17(1).
    7. Potter, Ross W.K. & Szomszor, Martin & Adams, Jonathan, 2020. "Interpreting CNCIs on a country-scale: The effect of domestic and international collaboration type," Journal of Informetrics, Elsevier, vol. 14(4).
    8. Salim Moussa, 2021. "Are FT50 journals really leading? A comment on Fassin," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9613-9622, December.
    9. Nina Lazar & K. Chithra, 2021. "Comprehensive bibliometric mapping of publication trends in the development of Building Sustainability Assessment Systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 4899-4923, April.
    10. Ruben Miranda & Esther Garcia-Carpintero, 2019. "Comparison of the share of documents and citations from different quartile journals in 25 research areas," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(1), pages 479-501, October.
    11. Elizabeth S. Vieira, 2023. "The influence of research collaboration on citation impact: the countries in the European Innovation Scoreboard," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(6), pages 3555-3579, June.
    12. Kathleen Rodenburg & Michael Rowan & Andrew Nixon & Julia Christensen Hughes, 2022. "The Misalignment of the FT50 with the Achievement of the UN’s SDGs: A Call for Responsible Research Assessment by Business Schools," Sustainability, MDPI, vol. 14(15), pages 1-33, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Clemens Blümel & Alexander Schniedermann, 2020. "Studying review articles in scientometrics and beyond: a research agenda," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 711-728, July.
    2. Alexander Schniedermann, 2021. "A comparison of systematic reviews and guideline-based systematic reviews in medical studies," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9829-9846, December.
    3. Bornmann, Lutz & Haunschild, Robin, 2016. "Citation score normalized by cited references (CSNCR): The introduction of a new citation impact indicator," Journal of Informetrics, Elsevier, vol. 10(3), pages 875-887.
    4. Iman Tahamtan & Askar Safipour Afshar & Khadijeh Ahamdzadeh, 2016. "Factors affecting number of citations: a comprehensive review of the literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(3), pages 1195-1225, June.
    5. Mike Thelwall, 2019. "The influence of highly cited papers on field normalised indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(2), pages 519-537, February.
    6. Elizabeth S. Vieira, 2023. "The influence of research collaboration on citation impact: the countries in the European Innovation Scoreboard," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(6), pages 3555-3579, June.
    7. Sepideh Fahimifar & Khadijeh Mousavi & Fatemeh Mozaffari & Marcel Ausloos, 2023. "Identification of the most important external features of highly cited scholarly papers through 3 (i.e., Ridge, Lasso, and Boruta) feature selection data mining methods," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(4), pages 3685-3712, August.
    8. Xu, Ran & Baghaei Lakeh, Arash & Ghaffarzadegan, Navid, 2021. "Examining the characteristics of impactful research topics: A case of three decades of HIV-AIDS research," Journal of Informetrics, Elsevier, vol. 15(1).
    9. Kong, Ling & Wang, Dongbo, 2020. "Comparison of citations and attention of cover and non-cover papers," Journal of Informetrics, Elsevier, vol. 14(4).
    10. Aksnes, Dag W. & Rip, Arie, 2009. "Researchers' perceptions of citations," Research Policy, Elsevier, vol. 38(6), pages 895-905, July.
    11. Tian Yu & Guang Yu & Peng-Yu Li & Liang Wang, 2014. "Citation impact prediction for scientific papers using stepwise regression analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1233-1252, November.
    12. Mingyang Wang & Zhenyu Wang & Guangsheng Chen, 2019. "Which can better predict the future success of articles? Bibliometric indices or alternative metrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1575-1595, June.
    13. Kenneth Zahringer & Christos Kolympiris & Nicholas Kalaitzandonakes, 2017. "Academic knowledge quality differentials and the quality of firm innovation," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 26(5), pages 821-844.
    14. Mingkun Wei, 2020. "Research on impact evaluation of open access journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(2), pages 1027-1049, February.
    15. Waleed M. Sweileh & Sa’ed H. Zyoud & Suleiman Al-Khalil & Samah W. Al-Jabi & Ansam F. Sawalha, 2014. "Assessing the Scientific Research Productivity of the Palestinian Higher Education Institutions," SAGE Open, , vol. 4(3), pages 21582440145, July.
    16. Zhang, Fang & Wu, Shengli, 2020. "Predicting future influence of papers, researchers, and venues in a dynamic academic network," Journal of Informetrics, Elsevier, vol. 14(2).
    17. Jefferson Seide Molléri & Kai Petersen & Emilia Mendes, 2018. "Towards understanding the relation between citations and research quality in software engineering studies," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(3), pages 1453-1478, December.
    18. Bar-Ilan, Judit, 2008. "Informetrics at the beginning of the 21st century—A review," Journal of Informetrics, Elsevier, vol. 2(1), pages 1-52.
    19. Aashish Mehta & Patrick Herron & Yasuyuki Motoyama & Richard Appelbaum & Timothy Lenoir, 2012. "Globalization and de-globalization in nanotechnology research: the role of China," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(2), pages 439-458, November.
    20. Lutz Bornmann & Adam Y. Ye & Fred Y. Ye, 2018. "Identifying “hot papers” and papers with “delayed recognition” in large-scale datasets by using dynamically normalized citation impact scores," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 655-674, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:12:y:2018:i:4:p:1015-1030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.