IDEAS home Printed from https://ideas.repec.org/a/eee/ijocip/v47y2024ics1874548224000672.html
   My bibliography  Save this article

Optimized unmanned aerial vehicle pathway system in disaster resilience network

Author

Listed:
  • Ma, Yi-Wei
  • Syuhada, Desti

Abstract

After a disaster, the interruption of networks in affected areas is a significant challenge, exacerbated by the malfunction of base stations and the complete absence of network infrastructure. Hence, the objective of this study is to achieve a systematic and well-supported path in the post-disaster system through the optimization of coverage area and the provision of high-quality service. Therefore, this study aims to enhance the extent of coverage and transmission efficiency by considering the specific needs of users to establish a logical and systematic flight path of Unmanned Aerial Vehicles (UAVs) in a post-disaster scenario. This study demonstrates a 12.7 % availability advantage over random methods that do not consider users and only generalize cluster length. This study optimizes the performance of the UAV by adjusting its altitude position best to meet the requirements of its coverage and transmission quality.

Suggested Citation

  • Ma, Yi-Wei & Syuhada, Desti, 2024. "Optimized unmanned aerial vehicle pathway system in disaster resilience network," International Journal of Critical Infrastructure Protection, Elsevier, vol. 47(C).
  • Handle: RePEc:eee:ijocip:v:47:y:2024:i:c:s1874548224000672
    DOI: 10.1016/j.ijcip.2024.100726
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1874548224000672
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijcip.2024.100726?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bai, Guanghan & Li, Yanjun & Fang, Yining & Zhang, Yun-An & Tao, Junyong, 2020. "Network approach for resilience evaluation of a UAV swarm by considering communication limits," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao, Yucheng & Jia, Limin & Zio, Enrico & Wang, Yanhui & Small, Michael & Li, Man, 2023. "Improving resilience of high-speed train by optimizing repair strategies," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    2. Liu, Lujie & Yang, Jun, 2023. "A dynamic mission abort policy for the swarm executing missions and its solution method by tailored deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    3. Sun, Qin & Li, Hongxu & Wang, Yuzhi & Zhang, Yingchao, 2022. "Multi-swarm-based cooperative reconfiguration model for resilient unmanned weapon system-of-systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    4. Fangyu Liu & Hongyan Dui & Ziyue Li, 2022. "Reliability analysis for electrical power systems based on importance measures," Journal of Risk and Reliability, , vol. 236(2), pages 317-328, April.
    5. Zhou, Xinxin & Huang, Yun & Bai, Guanghan & Xu, Bei & Tao, Junyong, 2024. "The resilience evaluation of unmanned autonomous swarm with informed agents under partial failure," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    6. Zhong, Yuanfu & Li, Hongxu & Sun, Qin & Huang, Zhiwen & Zhang, Yingchao, 2024. "A kill chain optimization method for improving the resilience of unmanned combat system-of-systems," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    7. Li, Hongxu & Sun, Qin & Zhong, Yuanfu & Huang, Zhiwen & Zhang, Yingchao, 2023. "A soft resource optimization method for improving the resilience of UAV swarms under continuous attack," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    8. Xu, Bei & Liu, Tao & Bai, Guanghan & Tao, Junyong & Zhang, Yun-an & Fang, Yining, 2022. "A multistate network approach for reliability evaluation of unmanned swarms by considering information exchange capacity," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    9. Geng, Sunyue & Liu, Sifeng & Fang, Zhigeng, 2022. "A demand-based framework for resilience assessment of multistate networks under disruptions," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    10. Elena Zaitseva & Vitaly Levashenko & Ravil Mukhamediev & Nicolae Brinzei & Andriy Kovalenko & Adilkhan Symagulov, 2023. "Review of Reliability Assessment Methods of Drone Swarm (Fleet) and a New Importance Evaluation Based Method of Drone Swarm Structure Analysis," Mathematics, MDPI, vol. 11(11), pages 1-26, June.
    11. Li, Hongxu & Zhong, Yuanfu & Zhuang, Xuebin, 2024. "A soft resource optimization method based on autonomous coordination of unmanned swarms system driven by resilience," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    12. Fu, Xiuwen & Zheng, Dingyi & Liu, Xiangwei & Xing, Liudong & Peng, Rui, 2025. "Systematic review and future perspectives on cascading failures in Internet of Things: Modeling and optimization," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
    13. Zhang, Chi & Liu, Tao & Bai, Guanghan & Tao, Junyong & Zhu, Wenjin, 2024. "A dynamic resilience evaluation method for cross-domain swarms in confrontation," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    14. Feng, Qiang & Liu, Meng & Dui, Hongyan & Ren, Yi & Sun, Bo & Yang, Dezhen & Wang, Zili, 2022. "Importance measure-based phased mission reliability and UAV number optimization for swarm," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    15. Dui, Hongyan & Zhang, Chi & Bai, Guanghan & Chen, Liwei, 2021. "Mission reliability modeling of UAV swarm and its structure optimization based on importance measure," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    16. Geng, Sunyue & Liu, Sifeng, 2025. "An agent-based framework for resilience analysis of service networks," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    17. Liu, Tao & Bai, Guanghan & Tao, Junyong & Zhang, Yun-An & Fang, Yining, 2024. "A Multistate Network Approach for Resilience Analysis of UAV Swarm considering Information Exchange Capacity," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    18. Kulkarni, Onkar & Dahan, Mathieu & Montreuil, Benoit, 2022. "Resilient Hyperconnected Parcel Delivery Network Design Under Disruption Risks," International Journal of Production Economics, Elsevier, vol. 251(C).
    19. Hui Xiao & Kunxiang Yi & Gang Kou & Liudong Xing, 2020. "Reliability of a two‐dimensional demand‐based networked system with multistate components," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(6), pages 453-468, September.
    20. Xu, Bei & Bai, Guanghan & Liu, Tao & Fang, Yining & Zhang, Yun-an & Tao, Junyong, 2023. "An improved swarm model with informed agents to prevent swarm-splitting," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijocip:v:47:y:2024:i:c:s1874548224000672. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-critical-infrastructure-protection .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.