IDEAS home Printed from https://ideas.repec.org/a/eee/ijocip/v24y2019icp1-13.html
   My bibliography  Save this article

A multi-perspective framework of analysis of critical infrastructures with respect to supply service, controllability and topology

Author

Listed:
  • Han, Fangyuan
  • Zio, Enrico

Abstract

In this work, we propose a multi-perspective framework of analysis of critical infrastructures (CIs) with respect to supply service, topology and controllability. The framework enables identifying the role of CI elements and quantifying the consequences of scenarios of multiple failures, with respect to the different perspectives considered. To present the analysis framework, a benchmark network representative of a real gas transmission network across several countries of the European Union (EU) is considered. The information extracted from such analysis can help us to identify the critical elements and how the properties of the network are affected by failures, and to propose corresponding improvements for CIs. The findings of this paper demonstrate the interest of considering several perspectives in the analysis of CIs for providing useful information for ensuring their safe and reliable operation.

Suggested Citation

  • Han, Fangyuan & Zio, Enrico, 2019. "A multi-perspective framework of analysis of critical infrastructures with respect to supply service, controllability and topology," International Journal of Critical Infrastructure Protection, Elsevier, vol. 24(C), pages 1-13.
  • Handle: RePEc:eee:ijocip:v:24:y:2019:i:c:p:1-13
    DOI: 10.1016/j.ijcip.2018.10.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1874548217301063
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijcip.2018.10.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu, Weiwei & Su, Meirong & Fath, Brian D. & Zhang, Mingqi & Hao, Yan, 2016. "A systematic method of evaluation of the Chinese natural gas supply security," Applied Energy, Elsevier, vol. 165(C), pages 858-867.
    2. Ramirez-Marquez, José Emmanuel & Rocco, Claudio M., 2008. "All-terminal network reliability optimization via probabilistic solution discovery," Reliability Engineering and System Safety, Elsevier, vol. 93(11), pages 1689-1697.
    3. Noah J Cowan & Erick J Chastain & Daril A Vilhena & James S Freudenberg & Carl T Bergstrom, 2012. "Nodal Dynamics, Not Degree Distributions, Determine the Structural Controllability of Complex Networks," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-5, June.
    4. Li, Y.F. & Sansavini, G. & Zio, E., 2013. "Non-dominated sorting binary differential evolution for the multi-objective optimization of cascading failures protection in complex networks," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 195-205.
    5. J. M. Ottino, 2004. "Engineering complex systems," Nature, Nature, vol. 427(6973), pages 399-399, January.
    6. Praks, Pavel & Kopustinskas, Vytis & Masera, Marcelo, 2015. "Probabilistic modelling of security of supply in gas networks and evaluation of new infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 254-264.
    7. Cadini, F. & Zio, E. & Petrescu, C.A., 2010. "Optimal expansion of an existing electrical power transmission network by multi-objective genetic algorithms," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 173-181.
    8. Zio, E. & Golea, L.R., 2012. "Analyzing the topological, electrical and reliability characteristics of a power transmission system for identifying its critical elements," Reliability Engineering and System Safety, Elsevier, vol. 101(C), pages 67-74.
    9. Zio, E., 2009. "Reliability engineering: Old problems and new challenges," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 125-141.
    10. Yang-Yu Liu & Jean-Jacques Slotine & Albert-László Barabási, 2011. "Controllability of complex networks," Nature, Nature, vol. 473(7346), pages 167-173, May.
    11. Bakolas, Efstathios & Saleh, Joseph H., 2011. "Augmenting defense-in-depth with the concepts of observability and diagnosability from Control Theory and Discrete Event Systems," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 184-193.
    12. Crucitti, Paolo & Latora, Vito & Marchiori, Massimo, 2004. "A topological analysis of the Italian electric power grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 338(1), pages 92-97.
    13. Zhengzhong Yuan & Chen Zhao & Zengru Di & Wen-Xu Wang & Ying-Cheng Lai, 2013. "Exact controllability of complex networks," Nature Communications, Nature, vol. 4(1), pages 1-9, December.
    14. Yang-Yu Liu & Jean-Jacques Slotine & Albert-László Barabási, 2012. "Control Centrality and Hierarchical Structure in Complex Networks," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-7, September.
    15. Zhang, Zili & Li, Xiangyang & Li, Hengyun, 2015. "A quantitative approach for assessing the critical nodal and linear elements of a railway infrastructure," International Journal of Critical Infrastructure Protection, Elsevier, vol. 8(C), pages 3-15.
    16. Limiao, Zhang & Daqing, Li & Pengju, Qin & Bowen, Fu & Yinan, Jiang & Zio, Enrico & Rui, Kang, 2016. "Reliability analysis of interdependent lattices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 120-125.
    17. Lewis, Adam M. & Ward, David & Cyra, Lukasz & Kourti, Naouma, 2013. "European Reference Network for Critical Infrastructure Protection," International Journal of Critical Infrastructure Protection, Elsevier, vol. 6(1), pages 51-60.
    18. Li, Jian & Dueñas-Osorio, Leonardo & Chen, Changkun & Shi, Congling, 2016. "Connectivity reliability and topological controllability of infrastructure networks: A comparative assessment," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 24-33.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sergey Vorobev & Anton Kolosnitsyn & Ilya Minarchenko, 2022. "Determination of the Most Interconnected Sections of Main Gas Pipelines Using the Maximum Clique Method," Energies, MDPI, vol. 15(2), pages 1-14, January.
    2. Molinos-Senante, María & Chamorro, Alondra & Contreras, Marta & Echaveguren, Tomas, 2023. "Natural hazard risk management in the Chilean drinking water industry: Diagnosis and recommendations," Utilities Policy, Elsevier, vol. 82(C).
    3. Corrado lo Storto, 2019. "An SNA-DEA Prioritization Framework to Identify Critical Nodes of Gas Networks: The Case of the US Interstate Gas Infrastructure," Energies, MDPI, vol. 12(23), pages 1-18, December.
    4. Martin Hromada & David Rehak & Ludek Lukas, 2021. "Resilience Assessment in Electricity Critical Infrastructure from the Point of View of Converged Security," Energies, MDPI, vol. 14(6), pages 1-20, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fangyuan Han & Enrico Zio, 2018. "Modeling an electric power microgrid by model predictive control for analyzing its characteristics from reliability, controllability and topological perspectives," Journal of Risk and Reliability, , vol. 232(2), pages 216-224, April.
    2. Nie, Sen & Wang, Xuwen & Wang, Binghong, 2015. "Effect of degree correlation on exact controllability of multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 98-102.
    3. Zohre Alipour & Mohammad Ali Saniee Monfared & Enrico Zio, 2014. "Comparing topological and reliability-based vulnerability analysis of Iran power transmission network," Journal of Risk and Reliability, , vol. 228(2), pages 139-151, April.
    4. Zio, Enrico, 2016. "Challenges in the vulnerability and risk analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 137-150.
    5. Hu, Ying & Yu, Yang & Mardani, Abbas, 2021. "Selection of carbon emissions control industries in China: An approach based on complex networks control perspective," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    6. Li, Sheng & Liu, Wenwen & Wu, Ruizi & Li, Junli, 2023. "An adaptive attack model to network controllability," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    7. Li, Jian & Dueñas-Osorio, Leonardo & Chen, Changkun & Shi, Congling, 2016. "Connectivity reliability and topological controllability of infrastructure networks: A comparative assessment," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 24-33.
    8. Li, Jian & Dueñas-Osorio, Leonardo & Chen, Changkun & Berryhill, Benjamin & Yazdani, Alireza, 2016. "Characterizing the topological and controllability features of U.S. power transmission networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 84-98.
    9. Li, Xin-Feng & Lu, Zhe-Ming, 2016. "Optimizing the controllability of arbitrary networks with genetic algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 422-433.
    10. Ding, Jin & Lu, Yong-Zai & Chu, Jian, 2013. "Studies on controllability of directed networks with extremal optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6603-6615.
    11. Farahmand, Hamed & Liu, Xueming & Dong, Shangjia & Mostafavi, Ali & Gao, Jianxi, 2022. "A Network Observability Framework for Sensor Placement in Flood Control Networks to Improve Flood Situational Awareness and Risk Management," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    12. Yin, Hongli & Zhang, Siying, 2016. "Minimum structural controllability problems of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 467-476.
    13. Aming Li & Yang-Yu Liu, 2020. "Controlling Network Dynamics," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 22(07n08), pages 1-19, February.
    14. Yang, Hyeonchae & Jung, Woo-Sung, 2016. "Structural efficiency to manipulate public research institution networks," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 21-32.
    15. Zhaoming Yang & Qi Xiang & Yuxuan He & Shiliang Peng & Michael Havbro Faber & Enrico Zio & Lili Zuo & Huai Su & Jinjun Zhang, 2023. "Resilience of Natural Gas Pipeline System: A Review and Outlook," Energies, MDPI, vol. 16(17), pages 1-19, August.
    16. Yan Zhang & Antonios Garas & Frank Schweitzer, 2019. "Control Contribution Identifies Top Driver Nodes In Complex Networks," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 22(07n08), pages 1-15, December.
    17. Xuejie Li & Yuan Xue & Yuxing Li & Qingshan Feng, 2022. "An Optimization Method for a Compressor Standby Scheme Based on Reliability Analysis," Energies, MDPI, vol. 15(21), pages 1-16, November.
    18. Tao Jia & Robert F Spivey & Boleslaw Szymanski & Gyorgy Korniss, 2015. "An Analysis of the Matching Hypothesis in Networks," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-12, June.
    19. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    20. Lin, Yi-Kuei & Yeh, Cheng-Ta, 2011. "Maximal network reliability for a stochastic power transmission network," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1332-1339.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijocip:v:24:y:2019:i:c:p:1-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-critical-infrastructure-protection .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.