IDEAS home Printed from https://ideas.repec.org/a/eee/forpol/v118y2020ics1389934120301027.html
   My bibliography  Save this article

An economic analysis of thinnings and rotation lengths in the presence of natural risks in even-aged forest stands

Author

Listed:
  • Halbritter, Andreas
  • Deegen, Peter
  • Susaeta, Andres

Abstract

A harvest scheduling model when the natural risk is not only dependent on the age of the forest stand but also on the stock density is presented in this paper. In addition, damages to human lives, human health and infrastructure caused by natural risks are incorporated. Using a conditional current value approach, the optimal thinning and rotation length conditions are determined and used for the qualitative analysis of the course of the optimal volume path under different risks. Also the impacts of external variables such as stand age, interest rate, timber price and damages to human lives etc. to the optimal harvest schedules are derived. The results and dependencies are discussed in detail and compared to findings presented in the literature.

Suggested Citation

  • Halbritter, Andreas & Deegen, Peter & Susaeta, Andres, 2020. "An economic analysis of thinnings and rotation lengths in the presence of natural risks in even-aged forest stands," Forest Policy and Economics, Elsevier, vol. 118(C).
  • Handle: RePEc:eee:forpol:v:118:y:2020:i:c:s1389934120301027
    DOI: 10.1016/j.forpol.2020.102223
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1389934120301027
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.forpol.2020.102223?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Halbritter, Andreas & Deegen, Peter, 2015. "A combined economic analysis of optimal planting density, thinning and rotation for an even-aged forest stand," Forest Policy and Economics, Elsevier, vol. 51(C), pages 38-46.
    2. Morag F. Macpherson & Adam Kleczkowski & John R. Healey & Nick Hanley, 2018. "The Effects of Disease on Optimal Forest Rotation: A Generalisable Analytical Framework," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(3), pages 565-588, July.
    3. Kelly M. Cobourn & Gregory S. Amacher & Robert G. Haight, 2019. "Cooperative Management of Invasive Species: A Dynamic Nash Bargaining Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(4), pages 1041-1068, April.
    4. Susaeta, Andres & Carter, Douglas R. & Adams, Damian C., 2014. "Impacts of Climate Change on Economics of Forestry and Adaptation Strategies in the Southern United States," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 46(2), pages 1-16, May.
    5. Patrice, Loisel, 2011. "Faustmann rotation and population dynamics in the presence of a risk of destructive events," Journal of Forest Economics, Elsevier, vol. 17(3), pages 235-247, August.
    6. Deegen, Peter, 2016. "Private and public timber production: How markets and political institutions matter," Forest Policy and Economics, Elsevier, vol. 72(C), pages 56-65.
    7. Coase, R H, 1981. "The Coase Theorem and the Empty Core: A Comment," Journal of Law and Economics, University of Chicago Press, vol. 24(1), pages 183-187, April.
    8. Petucco, Claudio & Andrés-Domenech, Pablo, 2018. "Land expectation value and optimal rotation age of maritime pine plantations under multiple risks," Journal of Forest Economics, Elsevier, vol. 30(C), pages 58-70.
    9. Susaeta, Andres & Carter, Douglas R. & Chang, Sun Joseph & Adams, Damian C., 2016. "A generalized Reed model with application to wildfire risk in even-aged Southern United States pine plantations," Forest Policy and Economics, Elsevier, vol. 67(C), pages 60-69.
    10. Gregory S. Amacher & Arun S. Malik & Robert G. Haight, 2005. "Not Getting Burned: The Importance of Fire Prevention in Forest Management," Land Economics, University of Wisconsin Press, vol. 81(2).
    11. Reed, William J., 1984. "The effects of the risk of fire on the optimal rotation of a forest," Journal of Environmental Economics and Management, Elsevier, vol. 11(2), pages 180-190, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Koster, Roman & Fuchs, Jasper M., 2022. "Opportunity costs of growing space – an essential driver of economical single-tree harvest decisions," Forest Policy and Economics, Elsevier, vol. 135(C).
    2. Bastit, Félix & Brunette, Marielle & Montagné-Huck, Claire, 2023. "Pests, wind and fire: A multi-hazard risk review for natural disturbances in forests," Ecological Economics, Elsevier, vol. 205(C).
    3. McTaggart, Ewan & Megiddo, Itamar & Kleczkowski, Adam, 2023. "The effect of pests and pathogens on forest harvesting regimes: A bioeconomic model," Ecological Economics, Elsevier, vol. 209(C).
    4. Félix Bastit & Marielle Brunette & Claire Montagne-Huck, 2021. "Earth, wind and fire: A multi-hazard risk review for natural disturbances in forests," Working Papers of BETA 2021-25, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. McTaggart, Ewan & Megiddo, Itamar & Kleczkowski, Adam, 2023. "The effect of pests and pathogens on forest harvesting regimes: A bioeconomic model," Ecological Economics, Elsevier, vol. 209(C).
    2. Deegen, Peter & Matolepszy, Kai, 2015. "Economic balancing of forest management under storm risk, the case of the Ore Mountains (Germany)," Journal of Forest Economics, Elsevier, vol. 21(1), pages 1-13.
    3. Rakotoarison, Hanitra & Loisel, Patrice, 2016. "The Faustmann model under storm risk and price uncertainty: A case study of European beech in Northwestern France," MPRA Paper 85114, University Library of Munich, Germany.
    4. Susaeta, Andres, 2018. "On Pressler’s indicator rate formula under the generalized Reed model," Journal of Forest Economics, Elsevier, vol. 30(C), pages 32-37.
    5. Patrice Loisel & Marielle Brunette & Stéphane Couture, 2020. "Insurance and Forest Rotation Decisions Under Storm Risk," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(2), pages 347-367, July.
    6. Macpherson, Morag F. & Kleczkowski, Adam & Healey, John R. & Hanley, Nick, 2017. "Payment for multiple forest benefits alters the effect of tree disease on optimal forest rotation length," Ecological Economics, Elsevier, vol. 134(C), pages 82-94.
    7. Petucco, Claudio & Andrés-Domenech, Pablo, 2018. "Land expectation value and optimal rotation age of maritime pine plantations under multiple risks," Journal of Forest Economics, Elsevier, vol. 30(C), pages 58-70.
    8. Morag F. Macpherson & Adam Kleczkowski & John R. Healey & Nick Hanley, 2018. "The Effects of Disease on Optimal Forest Rotation: A Generalisable Analytical Framework," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(3), pages 565-588, July.
    9. Couture, Stéphane & Reynaud, Arnaud, 2011. "Forest management under fire risk when forest carbon sequestration has value," Ecological Economics, Elsevier, vol. 70(11), pages 2002-2011, September.
    10. Al Abri, Ibtisam H. & Grogan, Kelly A. & Daigneault, Adam, 2017. "Optimal Forest Fire Management with Applications to Florida," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258568, Agricultural and Applied Economics Association.
    11. Sohngen, Brent & Tian, Xiaohui, 2016. "Global climate change impacts on forests and markets," Forest Policy and Economics, Elsevier, vol. 72(C), pages 18-26.
    12. Patrice Loisel & Marielle Brunette & Stéphane Couture, 2022. "Ambiguity, value of information and forest rotation decision under storm risk," Working Papers of BETA 2022-26, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    13. L. Ferreira & M. Constantino & J. Borges, 2014. "A stochastic approach to optimize Maritime pine (Pinus pinaster Ait.) stand management scheduling under fire risk. An application in Portugal," Annals of Operations Research, Springer, vol. 219(1), pages 359-377, August.
    14. Brunette, Marielle & Couture, Stéphane & Langlais, Eric, 2007. "Hedging Strategies in Forest Management," MPRA Paper 5228, University Library of Munich, Germany.
    15. Loisel, Patrice, 2014. "Impact of storm risk on Faustmann rotation," Forest Policy and Economics, Elsevier, vol. 38(C), pages 191-198.
    16. Khan, M. Ali, 2016. "On a forest as a commodity and on commodification in the discipline of forestry," Forest Policy and Economics, Elsevier, vol. 72(C), pages 7-17.
    17. Patrice Loisel & Guillerme Duvilli'e & Denis Barbeau & Brigitte Charnomordic, 2019. "EvaSylv: A user-friendly software to evaluate forestry scenarii including natural risk," Papers 1909.07288, arXiv.org.
    18. Chang, Sun Joseph, 2020. "Twenty one years after the publication of the generalized Faustmann formula," Forest Policy and Economics, Elsevier, vol. 118(C).
    19. Susaeta, Andres & Carney, Tyler, 2023. "Optimal regimes of prescribed burning in forest plantations in the presence of risk of wildfires in the southeastern United States," Forest Policy and Economics, Elsevier, vol. 151(C).
    20. Tommi Ekholm, 2019. "Optimal forest rotation under carbon pricing and forest damage risk," Papers 1912.00269, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:forpol:v:118:y:2020:i:c:s1389934120301027. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/forpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.