IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v77y2025ics1544612325003022.html
   My bibliography  Save this article

Forecasting the BRICS stock returns with best subset regressions

Author

Listed:
  • Ciner, Cetin

Abstract

Prior work identifies significant informational spillovers between the BRICS stocks, oil price and US equities. Our primary goal in this study is to examine whether these linkages can be utilized to improve out of sample predictions of the BRICS stock returns. We use a sparse regression method, best subset selection, and allow for fat tailed distributions. Our analysis detects robust forecasting ability in the Covid-19 era. We also show that the US equity market, but not oil price, contains significant predictive power for the BRICS stocks. The findings are, overall, consistent with the gradual diffusion of information hypothesis.

Suggested Citation

  • Ciner, Cetin, 2025. "Forecasting the BRICS stock returns with best subset regressions," Finance Research Letters, Elsevier, vol. 77(C).
  • Handle: RePEc:eee:finlet:v:77:y:2025:i:c:s1544612325003022
    DOI: 10.1016/j.frl.2025.107038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612325003022
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2025.107038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Umar, Zaghum & Trabelsi, Nader & Zaremba, Adam, 2021. "Oil shocks and equity markets: The case of GCC and BRICS economies," Energy Economics, Elsevier, vol. 96(C).
    2. Bouri, Elie & Cepni, Oguzhan & Gabauer, David & Gupta, Rangan, 2021. "Return connectedness across asset classes around the COVID-19 outbreak," International Review of Financial Analysis, Elsevier, vol. 73(C).
    3. Hong, Harrison & Torous, Walter & Valkanov, Rossen, 2007. "Do industries lead stock markets?," Journal of Financial Economics, Elsevier, vol. 83(2), pages 367-396, February.
    4. Chatziantoniou, Ioannis & Degiannakis, Stavros & Delis, Panagiotis & Filis, George, 2021. "Forecasting oil price volatility using spillover effects from uncertainty indices," Finance Research Letters, Elsevier, vol. 42(C).
    5. McIver, Ron P. & Kang, Sang Hoon, 2020. "Financial crises and the dynamics of the spillovers between the U.S. and BRICS stock markets," Research in International Business and Finance, Elsevier, vol. 54(C).
    6. Ciner, Cetin, 2019. "Do industry returns predict the stock market? A reprise using the random forest," The Quarterly Review of Economics and Finance, Elsevier, vol. 72(C), pages 152-158.
    7. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    8. Saswat Patra & Pradiptarathi Panda, 2021. "Spillovers and financial integration in emerging markets: Analysis of BRICS economies within a VAR‐BEKK framework," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 493-514, January.
    9. Ji, Qiang & Liu, Bing-Yue & Zhao, Wan-Li & Fan, Ying, 2020. "Modelling dynamic dependence and risk spillover between all oil price shocks and stock market returns in the BRICS," International Review of Financial Analysis, Elsevier, vol. 68(C).
    10. Tiwari, Aviral Kumar & Trabelsi, Nader & Alqahtani, Faisal & Hammoudeh, Shawkat, 2019. "Analysing systemic risk and time-frequency quantile dependence between crude oil prices and BRICS equity markets indices: A new look," Energy Economics, Elsevier, vol. 83(C), pages 445-466.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Huiming & Huang, Xi & Ye, Fangyu & Li, Shuang, 2024. "Frequency spillover effects and cross-quantile dependence between crude oil and stock markets: Evidence from BRICS and G7 countries," The North American Journal of Economics and Finance, Elsevier, vol. 70(C).
    2. Hanif, Waqas & Hadhri, Sinda & El Khoury, Rim, 2024. "Quantile spillovers and connectedness between oil shocks and stock markets of the largest oil producers and consumers," Journal of Commodity Markets, Elsevier, vol. 34(C).
    3. He, Mengxi & Wen, Danyan & Xing, Lu & Zhang, Yaojie, 2024. "Industry volatility concentration and the predictability of aggregate stock market volatility," International Review of Economics & Finance, Elsevier, vol. 95(C).
    4. Naeem, Muhammad Abubakr & Pham, Linh & Senthilkumar, Arunachalam & Karim, Sitara, 2022. "Oil shocks and BRIC markets: Evidence from extreme quantile approach," Energy Economics, Elsevier, vol. 108(C).
    5. Al-Fayoumi, Nedal & Bouri, Elie & Abuzayed, Bana, 2023. "Decomposed oil price shocks and GCC stock market sector returns and volatility," Energy Economics, Elsevier, vol. 126(C).
    6. Niu, Zibo & Demirer, Riza & Suleman, Muhammad Tahir & Zhang, Hongwei & Zhu, Xuehong, 2024. "Do industries predict stock market volatility? Evidence from machine learning models," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 90(C).
    7. Mensi, Walid & Rehman, Mobeen Ur & Al-Yahyaee, Khamis Hamed & Vo, Xuan Vinh, 2023. "Frequency dependence between oil futures and international stock markets and the role of gold, bonds, and uncertainty indices: Evidence from partial and multivariate wavelet approaches," Resources Policy, Elsevier, vol. 80(C).
    8. Jin, Xiu & Liu, Yueli & Yu, Jinming & Huang, Weiqiang, 2023. "COVID-19 and extreme risk spillovers between oil and BRICS stock markets: A multiscale perspective," The North American Journal of Economics and Finance, Elsevier, vol. 68(C).
    9. Shi, Chunpei & Wei, Yu & Li, Xiafei & Liu, Yuntong, 2023. "Combination forecasts of China's oil futures returns based on multiple uncertainties and their connectedness with oil," Energy Economics, Elsevier, vol. 126(C).
    10. Awijen, Haithem & Ben Zaied, Younes & Ben Lahouel, Béchir & Khlifi, Foued, 2023. "Machine learning for US cross-industry return predictability under information uncertainty," Research in International Business and Finance, Elsevier, vol. 64(C).
    11. Esther Eiling & Raymond Kan & Ali Sharifkhani, 2018. "Sectoral Labor Reallocation and Return Predictability," Working Papers 2018-006, Human Capital and Economic Opportunity Working Group.
    12. Goodness C. Aye & Mehmet Balcilar & Rangan Gupta, 2017. "International stock return predictability: Is the role of U.S. time-varying?," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 44(1), pages 121-146, February.
    13. José Afonso Faias & Juan Arismendi Zambrano, 2022. "Equity Risk Premium Predictability from Cross-Sectoral Downturns [International asset allocation with regime shifts]," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 12(3), pages 808-842.
    14. Yousaf, Imran & Beljid, Makram & Chaibi, Anis & Ajlouni, Ahmed AL, 2022. "Do volatility spillover and hedging among GCC stock markets and global factors vary from normal to turbulent periods? Evidence from the global financial crisis and Covid-19 pandemic crisis," Pacific-Basin Finance Journal, Elsevier, vol. 73(C).
    15. Hubert Dichtl, 2020. "Investing in the S&P 500 index: Can anything beat the buy‐and‐hold strategy?," Review of Financial Economics, John Wiley & Sons, vol. 38(2), pages 352-378, April.
    16. Leland E. Farmer & Lawrence Schmidt & Allan Timmermann, 2023. "Pockets of Predictability," Journal of Finance, American Finance Association, vol. 78(3), pages 1279-1341, June.
    17. Aramonte, Sirio & Jahan-Parvar, Mohammad R. & Shugarman, Justin K., 2019. "Institutions and return predictability in oil-exporting countries," The Quarterly Review of Economics and Finance, Elsevier, vol. 71(C), pages 14-26.
    18. Umar, Zaghum & Aziz, Saqib & Tawil, Dima, 2021. "The impact of COVID-19 induced panic on the return and volatility of precious metals," Journal of Behavioral and Experimental Finance, Elsevier, vol. 31(C).
    19. Wang, Zi-Xin & Liu, Bing-Yue & Fan, Ying, 2023. "Network connectedness between China's crude oil futures and sector stock indices," Energy Economics, Elsevier, vol. 125(C).
    20. Smith, Simon C., 2021. "International stock return predictability," International Review of Financial Analysis, Elsevier, vol. 78(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:77:y:2025:i:c:s1544612325003022. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.