IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v75y2025ics1544612325001394.html
   My bibliography  Save this article

Can switching between predictive models and the historical average improve bond return predictability?

Author

Listed:
  • Wan, Runqing
  • Xing, Bingxin Ann

Abstract

We propose a novel and simple “switching” approach to improve out-of-sample evidence of return predictability: when the return forecast from a predictive model is negative, we switch to use the return’s historical average as our forecast. When applied to predict Treasury bond returns, this approach can produce stronger evidence of statistical predictability and higher real-time economic gains than the original forecasts. We also show that our approach outperforms the “truncation” approach which replaces negative forecasts with a zero value. Our findings lend support to the hypothesis that predictive evidence exists only in short-lived periods.

Suggested Citation

  • Wan, Runqing & Xing, Bingxin Ann, 2025. "Can switching between predictive models and the historical average improve bond return predictability?," Finance Research Letters, Elsevier, vol. 75(C).
  • Handle: RePEc:eee:finlet:v:75:y:2025:i:c:s1544612325001394
    DOI: 10.1016/j.frl.2025.106874
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612325001394
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2025.106874?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    2. Antonio Gargano & Davide Pettenuzzo & Allan Timmermann, 2019. "Bond Return Predictability: Economic Value and Links to the Macroeconomy," Management Science, INFORMS, vol. 65(2), pages 508-540, February.
    3. Amit Goyal & Ivo Welch & Athanasse Zafirov, 2024. "A Comprehensive 2022 Look at the Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 37(11), pages 3490-3557.
    4. Gurkaynak, Refet S. & Sack, Brian & Wright, Jonathan H., 2007. "The U.S. Treasury yield curve: 1961 to the present," Journal of Monetary Economics, Elsevier, vol. 54(8), pages 2291-2304, November.
    5. Pastor, Lubos & Stambaugh, Robert F., 2003. "Liquidity Risk and Expected Stock Returns," Journal of Political Economy, University of Chicago Press, vol. 111(3), pages 642-685, June.
    6. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    7. Liu, Yan & Wu, Jing Cynthia, 2021. "Reconstructing the yield curve," Journal of Financial Economics, Elsevier, vol. 142(3), pages 1395-1425.
    8. Leland E. Farmer & Lawrence Schmidt & Allan Timmermann, 2023. "Pockets of Predictability," Journal of Finance, American Finance Association, vol. 78(3), pages 1279-1341, June.
    9. Sydney C. Ludvigson & Serena Ng, 2009. "Macro Factors in Bond Risk Premia," The Review of Financial Studies, Society for Financial Studies, vol. 22(12), pages 5027-5067, December.
    10. Sarno, Lucio & Schneider, Paul & Wagner, Christian, 2016. "The economic value of predicting bond risk premia," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 247-267.
    11. Rapach, David E. & Ringgenberg, Matthew C. & Zhou, Guofu, 2016. "Short interest and aggregate stock returns," Journal of Financial Economics, Elsevier, vol. 121(1), pages 46-65.
    12. Kyle Jurado & Sydney C. Ludvigson & Serena Ng, 2015. "Measuring Uncertainty," American Economic Review, American Economic Association, vol. 105(3), pages 1177-1216, March.
    13. Michael D. Bauer & James D. Hamilton, 2018. "Robust Bond Risk Premia," The Review of Financial Studies, Society for Financial Studies, vol. 31(2), pages 399-448.
    14. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    15. Eric Ghysels & Casidhe Horan & Emanuel Moench, 2018. "Forecasting through the Rearview Mirror: Data Revisions and Bond Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 31(2), pages 678-714.
    16. Daniel L. Thornton & Giorgio Valente, 2012. "Out-of-Sample Predictions of Bond Excess Returns and Forward Rates: An Asset Allocation Perspective," The Review of Financial Studies, Society for Financial Studies, vol. 25(10), pages 3141-3168.
    17. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    18. Wan, Runqing & Fulop, Andras & Li, Junye, 2022. "Real-time Bayesian learning and bond return predictability," Journal of Econometrics, Elsevier, vol. 230(1), pages 114-130.
    19. Sydney C. Ludvigson & Sai Ma & Serena Ng, 2021. "Uncertainty and Business Cycles: Exogenous Impulse or Endogenous Response?," American Economic Journal: Macroeconomics, American Economic Association, vol. 13(4), pages 369-410, October.
    20. Fama, Eugene F & Bliss, Robert R, 1987. "The Information in Long-Maturity Forward Rates," American Economic Review, American Economic Association, vol. 77(4), pages 680-692, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wan, Runqing & Fulop, Andras & Li, Junye, 2022. "Real-time Bayesian learning and bond return predictability," Journal of Econometrics, Elsevier, vol. 230(1), pages 114-130.
    2. Daniel Borup & Jonas N. Eriksen & Mads M. Kjær & Martin Thyrsgaard, 2024. "Predicting Bond Return Predictability," Management Science, INFORMS, vol. 70(2), pages 931-951, February.
    3. Huang, Dashan & Jiang, Fuwei & Li, Kunpeng & Tong, Guoshi & Zhou, Guofu, 2023. "Are bond returns predictable with real-time macro data?," Journal of Econometrics, Elsevier, vol. 237(2).
    4. Antonio Gargano & Davide Pettenuzzo & Allan Timmermann, 2019. "Bond Return Predictability: Economic Value and Links to the Macroeconomy," Management Science, INFORMS, vol. 65(2), pages 508-540, February.
    5. Feng Zhao & Guofu Zhou & Xiaoneng Zhu, 2021. "Unspanned Global Macro Risks in Bond Returns," Management Science, INFORMS, vol. 67(12), pages 7825-7843, December.
    6. Hansen, Jorge Wolfgang, 2025. "Unspanned stochastic volatility in the linear-rational square-root model: Evidence from the Treasury market," Journal of Banking & Finance, Elsevier, vol. 171(C).
    7. Sarno, Lucio & Schneider, Paul & Wagner, Christian, 2016. "The economic value of predicting bond risk premia," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 247-267.
    8. Andrea Berardi & Michael Markovich & Alberto Plazzi & Andrea Tamoni, 2021. "Mind the (Convergence) Gap: Bond Predictability Strikes Back!," Management Science, INFORMS, vol. 67(12), pages 7888-7911, December.
    9. Mirco Rubin & Dario Ruzzi, 2020. "Equity tail risk in the treasury bond market," Temi di discussione (Economic working papers) 1311, Bank of Italy, Economic Research and International Relations Area.
    10. Hai Lin & Chunchi Wu & Guofu Zhou, 2018. "Forecasting Corporate Bond Returns with a Large Set of Predictors: An Iterated Combination Approach," Management Science, INFORMS, vol. 64(9), pages 4218-4238, September.
    11. Tom Engsted & Stig V. Møller & Magnus Sander, 2013. "Bond return predictability in expansions and recessions," CREATES Research Papers 2013-13, Department of Economics and Business Economics, Aarhus University.
    12. Su, Hao & Ying, Chengwei & Zhu, Xiaoneng, 2022. "Disaster risk matters in the bond market," Finance Research Letters, Elsevier, vol. 47(PA).
    13. repec:zbw:bofrdp:2020_002 is not listed on IDEAS
    14. Rui Liu, 2019. "Forecasting Bond Risk Premia with Unspanned Macroeconomic Information," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 9(01), pages 1-62, March.
    15. Guo, Bin & Huang, Fuzhe & Li, Kai, 2022. "Time to build and bond risk premia," Journal of Economic Dynamics and Control, Elsevier, vol. 136(C).
    16. Ana Sofia Monteiro & Helder Sebastião & Nuno Silva, 2025. "Prediction and Allocation of Stocks, Bonds, and REITs in the US Market," Computational Economics, Springer;Society for Computational Economics, vol. 65(3), pages 1191-1230, March.
    17. Carlo A. Favero & Arie E. Gozluklu & Haoxi Yang, 2016. "Demographics and the Behavior of Interest Rates," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 64(4), pages 732-776, November.
    18. Faria, Gonçalo & Verona, Fabio, 2020. "Frequency-domain information for active portfolio management," Bank of Finland Research Discussion Papers 2/2020, Bank of Finland.
    19. Ren‐Raw Chen & Pei‐Lin Hsieh & Jeffrey Huang & Xiaowei Li, 2023. "Predictive power of the implied volatility term structure in the fixed‐income market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(3), pages 349-383, March.
    20. Zhang, Han & Fan, Xiaoyun & Guo, Bin & Zhang, Wei, 2019. "Reexamining time-varying bond risk premia in the post-financial crisis era," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).
    21. Oguzhan Cepni & Rangan Gupta & I. Ethem Güney & M. Yilmaz, 2020. "Forecasting local currency bond risk premia of emerging markets: The role of cross‐country macrofinancial linkages," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(6), pages 966-985, September.

    More about this item

    Keywords

    Out-of-sample bond return predictability; Historical mean; Regime-switching; Pockets of predictability;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:75:y:2025:i:c:s1544612325001394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.